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Generalized crossover in multiparameter Hamiltonians
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Many systems near criticality can be described by Hamiltonians involving several relevant couplings and
possessing many nontrivial fixed points. A simple and physically appealing characterization of the crossover
lines and surfaces connecting different nontrivial fixed points is presented. Generalized crossover is related to
the vanishing of the renormalization group functionZt

21 . An explicit example is discussed in detail based on
the tetragonal Landau-Ginzburg-Wilson Hamiltonian.
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According to Wilson renormalization group~WRG!
theory, the critical properties of physical systems undergo
second-order phase transitions are well described by the
frared behavior of~quantum! field theories belonging to the
appropriate universality class. In practice, however, it is u
ally quite hard to reproduce the experimental conditions c
responding to strict criticality and to verify the scaling pr
dicted by ~massless! field theory. Nevertheless, in man
situations, one may still describe the behavior of the sys
in terms of ‘‘effective’’ exponents. This dependence of t
effective exponents on some nonuniversal parameter is
ally termed ‘‘crossover,’’ and it has been shown that cro
over phenomena can be consistently studied in the conte
~massive! field theory.

Accurate theoretical and numerical studies of this p
nomenon have been presented in the literature, mainly fo
ing, however, on the crossover between a trivial~Gaussian!
fixed point and an attractive Wilson-Fisher point, in the pr
ence of short- or medium-range interactions@1–5#. However,
there are physical situations characterized by the presen
a larger number of nontrivial fixed points. While only on
among them is fully attractive and represents the physic
the second-order phase transition, the other nontrivial po
exert some attraction on the RG trajectories, and as a co
quence we may expect that, in the neighborhood of critic
ity, the system can be quite accurately described by point
the parameter space which lie near or above special RG
jectories connecting the different fixed points. Generaliz
crossover exponents may be defined along these trajecto
In experimental measurements, under proper assumption
is reasonable to expect that sets of measured exponents
correspond to specific points along these curves.

It may, therefore, be useful to find intrinsic characteriz
tions of these generalized crossover curves, which only
very simple and specific examples can be deduced dire
from inspection of the relevant RG equations.

In order to study this problem, we found it convenient
take a specific field-theoretical model, which was recen
discussed in the literature as the tetragonal Landau-Ginz
Wilson Hamiltonian@6,7#. The results we obtained in thi
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specific example can be easily extended to many other
tems where a similar multiplicity of nontrivial fixed points i
present.

Our starting point is the following Hamiltonian:

H@f#5E ddxH 1

2 (
i ,a

@]mfa,i
2 ~x!1rfa,i

2 ~x!#

1
1

4! (
i , j ,a,b

~u01v0d i j 1w0d i j dab!fa,i
2 ~x!fb, j

2 ~x!J
~1!

where a,b51,2, . . . ,M and i , j 51,2, . . . ,N. The models
with M52 are physically interesting since they should d
scribe the critical properties in some structural and antifer
magnetic phase transitions and they are sufficiently gen
for the purpose of illustrating our results.

The RG functionsbu , bv , bw , andhf , h t are known up
to six loops, and it is possible to study the fixed points of t
models and their stability properties by solving the equatio
for the common zeros of theb functions and evaluating the
eigenvalues of the stability matrix@7#.

The e expansion analysis of the tetragonal Hamiltoni
indicates the presence of eight fixed points. Not all of the
however, actually represent different independent phys
situations, because of the symmetry

~u0 ,v0 ,w0!→~u0 ,v01 3
2 w0 ,2w0! ~2!

possessed by the above Hamiltonian in the caseM52.
The six distinct fixed points can be classified according

their symmetry properties; with obvious notation we sh
identify them by the following names:

G5Gauss→~u05v05w050!,

I 5Ising→~u05v050!;I 8,

H5Heisenberg→~v05w050!,

XY→~u05w050!,

T5tetragonal→~w050!,

C5cubic→~v050!;C8.
©2001 The American Physical Society04-1
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The symmetry properties of the Hamiltonian reflect the
selves in the symmetries of theb functions. These in turn
imply the existence of subspaces of the parameter sp
(u0 ,v0 ,w0) which are stable under RG transformations. O
may easily show that, to all orders of perturbations theo
the following initial conditions are preserved by RG tran
formations:u050: a plane includingG, I, I 8, andXY; w0
50: a plane includingG, H, XY, and T; v050: a plane
including G, H, I, andC; v01 3

2 w050: a plane includingG,
H, I 8, andC8.

An analysis of the stability matrix can be performed
full parameter space and in each of the invariant subspa
leading to the following general conclusions:~1! G is com-
pletely unstable with respect to any perturbation.

~2! H, I, andI 8 are attractive with respect to the Gaussi
point, otherwise unstable with respect to all perturbations

~3! C and C8 are stable in the subspacesv050 andv0
1 3

2 w050, respectively, but their stability matrix possesse
negative eigenvalue in full parameter space.

~4! XY is certainly stable in the subspaceu050 and prob-
ably also in full parameter space, in which caseT has a
direction of instability in thew050 subspace, leading to
ward XY @7#.

Most previous studies of crossover have been conce
with ‘‘crossover lines’’ connecting the Gaussian fixed po
G with nontrivial fixed points along RG trajectories. In th
model at hand, the straight lines connectingG to the points
I (I 8), XY, and H are such crossover lines, and the cor
sponding crossover exponents can easily be related to the
functions obtained by specializing the general expression
the values taken along these lines:

b I~w![bw~0,0,w!, h t I
~w![h t~0,0,w!,

bH~u![bu~u,0,0!, h tH
~u![h t~u,0,0!,

bxy~v ![bv~0,v,0!, h txy
~v ![h t~0,v,0!.

In particular, the functionZt
21 , related to the renormal

ization of the one-particle irreducible two-point function b
insertion of the operator( ifa,i

2 (x), can be evaluated alon
the crossover lines simply by integrating the correspond
differential equation

Fb~z!
]

]z
1h t~z!GZt

21~z!50 ~3!

wherez is the generic coupling that parametrizes the cro
over line.

It is relevant to our purposes to notice that,z* being the
fixed point value of the coupling, such thatb(z* )50, as a
consequence of the above equation the functionZt

21(z), un-
der the ‘‘nontriviality’’ assumptionh t(z* ),0, has the prop-
erty Zt

21(z* )50. We may appreciate that other choices
the renormalization functionZ, differing from Zt by powers
of Zf , will not alter our conclusion as long as the corr
sponding nontriviality conditionh(z* ),0 is satisfied.
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In models characterized by a multidimensional parame
space, this notion of crossover must be supplemented b
description of the RG trajectories connecting different no
trivial fixed points. As we shall immediately show, it is i
general possible to define ‘‘crossover surfaces’’ in parame
space, that have the property that all the RG trajectories c
necting nontrivial fixed points~and obviously the points
themselves! lie upon these surfaces.

The formal proof of this statement for the tetragon
model discussed above goes as follows: we introduce
renormalization functionZt

21(ū,v̄,w̄) satisfying by defini-
tion the partial differential equation

Fb ū

]

]ū
1b v̄

]

] v̄
1b w̄

]

]w̄
1h tGZt

21~ ū,v̄,w̄!50 ~4!

with the boundary conditionZt
21(0,0,0)51. Zt

21(ū,v̄,w̄)
obviously reduces to the above defined functionsZt

21(z)

whenever any two of the three couplingsū, v̄, w̄ are set
equal to zero.

Let us now consider the two-dimensional surface iden
fied by the condition

Zt
21~ ū,v̄,w̄!50.

As a consequence of the differential equation obeyed
Zt

21(ū,v̄,w̄) and of the above condition, the vector fieldbW

[„b ū(ū,v̄,w̄),b v̄(ū,v̄,w̄),b w̄(ū,v̄,w̄)… is ortogonal to the
vector field ¹W Zt

21[(]Zt
21/]ū,]Zt

21/] v̄,]Zt
21/]w̄) when

the two vectors are evaluated at any point of the surf
Zt

2150, wherebW •¹W Zt
2150. Therefore the RG trajectorie

going through any point of the surfaceZt
2150 are found to

stay on the surface itself, since the local tangent to the
jectory, i.e., the vector fieldbW , is orthogonal to a vector
normal to the surface~the gradient field¹W Zt

21). Our proof is
now completed by the observation that all nontrivial poin
lie on the surface because, as previously discussed, they
satisfy the propertyZt

21(z* )50.
An interesting consequence of our result is obtained

considering the intersections of the crossover surf
Zt

21(ū,v̄,w̄)50 with the RG-stable planes obtained by s
ting u050, v050, w050, andv01 3

2 w050, respectively.
These intersections are obviously simple curves on the
variant planes connecting pairs of nontrivial fixed points a
defining RG trajectories in the corresponding restricted
rameter subspaces.

One cannot fail to notice that in deriving our result w
only made use of very general properties of RG functio
and equations. Therefore we can draw the general conclu
that the conditionZt

2150 may unambiguously characteriz
the ‘‘crossover surface’’ in wide classes of Hamiltonian sy
tems involving many relevant parameters.

A rather explicit illustration of the mechanism describ
in the present paper is obtained by considering the tetrag
model in the limit of an infinite number of field componen
(N→`). At variance with standard O(N) vector models, the
4-2
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tetragonal model does not became trivial in this limit, b
cause nontrivial contributions to all orders ofv̄ and w̄ cou-
plings are still present. However some simplifications oc
which make our discussion, while still quite general, fo
mally much simpler.

In the largeN limit is possible to show that the RG func
tions take the following form:

b ū~ ū,v̄,w̄!5A~ v̄,w̄!ū2B~ v̄,w̄!ū2, ~5!

b v̄~ ū,v̄,w̄!5b̃ v̄~ v̄,w̄!, ~6!

b w̄~ ū,v̄,w̄!5b̃ w̄~ v̄,w̄!, ~7!

hf~ ū,v̄,w̄!5h̃f~ v̄,w̄!, ~8!

h t~ ū,v̄,w̄!5h̃ t~ v̄,w̄!1B~ v̄,w̄!ū. ~9!

The system of equationsb̃ v̄( v̄,w̄)50 andb̃ w̄( v̄,w̄)50 ad-
mits four sets of solutions (v̄* ,w̄* ). For each set one find
two fixed points, corresponding to the valuesū* 50 and
ū* 5A( v̄* ,w̄* )/B( v̄* ,w̄* ).

Because of the above relationships, the differential eq
tion satisfied by the functionZt

21(ū,v̄,w̄) can be solved in
the largeN limit by the ansatz

Zt
21~ ū,v̄,w̄!5Z̃t

21~ v̄,w̄!@12ūY~ v̄,w̄!# ~10!

leading to the equations

F b̃ v̄~ v̄,w̄!
]

] v̄
1b̃ w̄~ v̄,w̄!

]

]w̄
1h̃ t~ v̄,w̄!G Z̃t

21~ v̄,w̄!50,

~11!

F b̃ v̄~ v̄,w̄!
]

] v̄
1b̃ w̄~ v̄,w̄!

]

]w̄
1A~ v̄,w̄!GY~ v̄,w̄!5B~ v̄,w̄!.

~12!

The first equation is simply the restriction of the evolution
the u050 plane; we can then note that the functionv̄(w̄)
defined by the conditionZ̃t

21( v̄,w̄)50 satisfies the ordinary
differential equation

dv̄

dw̄
5

b v̄~ v̄,w̄!

b w̄~ v̄,w̄!
~13!

characterizing all RG trajectories in the (v̄,w̄) plane, and
furthermore it connects theI and XY fixed points. Notice,
however, that, since the conditionZ̃t

21( v̄,w̄)50 is indepen-

dent ofū, it defines a surface in full parameter space, and
above discussion shows that the fixed pointsC andT must lie
on this surface.

Once the functionsZ̃t
21 and Y( v̄,w̄) have been deter

mined, it is easy in the largeN limit to reconstruct the full
Zt

2150 surface, which can be simply described by the ab
condition and by the function
04710
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ū~ v̄,w̄!5
1

Y~ v̄,w̄!
. ~14!

Notice that, as a consequence of Eq.~12!, the function
ū( v̄,w̄) does not depend on the detailed form of the R
function h̃ t , as expected from our general arguments.

The intersections of the crossover surface with the pla

v̄50 andw̄50 can now be found in a rather explicit form
by exploiting the above simplifications. In terms of the g
neric variablez we obtain the relevant equations:

F b̃~z!
]

]z
1h̃ t~z!G Z̃t

21~z!50, ~15!

F b̃~z!
]

]z
1A~z!G S 1

ū~z!
D 5B~z!. ~16!

It is straightforward to solve the linear equations, obtainin

Z̃t
21~z!5expF2E

0

zh̃ t~z8!

b̃~z8!
dz8G , ~17!

ū~z!5
X~z!

E
0

z

@B~z8!/b̃~z8!#X~z8!dz8

, ~18!

where

X~z!5expF E
0

zA~z8!

b̃~z8!
dz8G . ~19!

It is easy to check thatū(z) is a RG trajectory and that in
the limits z→0, z→z* @b̃(z* )50# we have ū(0)
5A(0)/B(0) and ū(z* )5A(z* )/B(z* ), respectively, con-
sistent with the boundary conditions at the fixed points.

FIG. 1. Crossover trajectories connecting the Ising and
O(2N) fixed points to the cubic one, in the limit of an infinit
number of field components (N→`). u and w are the standard
dimensionless renormalized couplings.
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The above expressions lend themselves to simple ana
cal integration in the one-loop approximation and to ea
numerical integration in the more general case.

For the sake of illustration we computed explicitly th
crossover lines on the (u,w) plane. Figure 1 shows the re
sults of our numerical integration of the equations, wh
04710
ti-
y

n

resummed six-loop RG functions are employed. The stra
line connectingI to C is the intersection of thev̄50 plane
with the Z̃t

2150 surface. The intersections of the crossov
surface with the planesv̄50 andw̄50 can now be found in
a rather explicit form, by exploiting the above simplifica
tions.
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