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Evaluation of the improvement parameter in the lattice Hamiltonian approach
to critical phenomena

Massimo Campostrini,* Pietro Parruccini,† and Paolo Rossi‡

INFN, Sezione di Pisa, and Dipartimento di Fisica ‘‘Enrico Fermi’’ dell’Universita` di Pisa, Via Buonarroti 2, I-56125 Pisa, Italy
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In lattice Hamiltonian systems with a quartic couplingg, a critical valueg* may exist such that, wheng
5g* , the leading irrelevant operator decouples from the Hamiltonian and the leading nonscaling contribution
to renormalization-group invariant physical quantities~evaluated in the critical region! vanishes. The 1/N
expansion technique is applied to the evaluation ofg* for the lattice Hamiltonian of vector spin models with
O(N) symmetry. As a byproduct, systematic asymptotic expansions for the relevant lattice massive one-loop
integrals are obtained.
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I. INTRODUCTION

The quest for better analytical and numerical methods
the theoretical evaluation of measurable physical quantit
such as critical exponents and amplitude ratios, is one of
lasting tasks of statistical field theory.

In recent years substantial progress in this field has b
made by the introduction of a method based on the stro
coupling lattice expansion of improved Hamiltonians@1# ~for
a review, cf. Ref.@2#!. The essential feature of this method
the possibility of removing all leading nonscaling contrib
tions to physical quantities, in the neighborhood of criticali
by a specific choice of a parameter in the lattice Hamilton
~critical coupling!. The convergence of analytical and/or n
merical evaluations is therefore impressively faster than
any other variant form of the models under inspection
longing to the same universality class.

The main limitation of this method lays in the absence
an efficient analytical technique for the determination of
critical parameter. Conceptual reasons for this limitation m
be found in the impossibility of ane expansion for the value
of the critical parameter, both in the 42e and in the 21e
expansion schemes. In practice, one must resort to an
trapolation from numerical Monte Carlo finite-size evalu
tions of some physical quantity, typically the Binder cum
lant @1,2#.

Another well-known analytical approach to the study
critical lattice models is the 1/N expansion, which applies, in
particular, to the physically very important class of O(N)
spin models in three dimensions. However, it is known th
in exactly three dimensions and for nearest-neighbor inte
tions, the critical parameter in the large-N limit is a negative
number@3#. Since the critical parameter controls the larg
field behavior of the interaction potential, a negative va
would naively imply an unbounded Hamiltonian. In practi
this would prevent a Monte Carlo simulation of the syste
thus seriously jeopardizing the conceptual meaning of
whole approach.
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Nevertheless, we still seriously believe the 1/N expansion
to be, from a theoretical point of view, probably the mo
relevant expansion scheme that can be applied to any q
tum and statistical field theory, in that there is no know
obstruction to summability of the series expansion in pow
of 1/N for the values of physical quantities.

Therefore, we decided to explore the conceptual and
merical consequences of performing a systematic 1/N expan-
sion of the critical parameter, for the class of thre
dimensional O(N) spin models, in order to check the actu
relevance of the drawbacks that we mentioned above.

As a consequence of our analysis we found that the c
cal parameter can be formally computed within the exp
sion with no limitation related to the sign of its large-N value
and for space dimensionalities in the interval 2,d,4. In
particular, we found that the sign of the first 1/N correction is
positive, and one may then hope to find a valueNc such that
the parameter itself vanishes. However, the numerical in
cation following from our computation is far from the valu
Nc.5 or 6 suggested by Monte Carlo simulations. The
fore, higher-order effects are expected to be very relev
and it is still unclear that the predictions of the 1/N expan-
sion may be extended to the regionN,Nc .

As a byproduct of our analysis we obtained new mo
efficient expressions for the asymptotic expansions of m
important functions entering our calculations. We presen
these results with some details, because they might be
evant to other computations of critical and subcritical qua
tities.

In Sec. II we introduce the lattice O(N) models and their
1/N expansion. In Secs. III, IV, and V we discuss on gene
grounds the relevant asymptotic expansions~gap equation,
effective propagator, and renomalized coupling!. In Secs. VI
and VII we specialize these expansions to the case of
standard nearest-neighbor interaction, with the help of so
useful integral representations. A few numerical results
presented in Sec. VIII. In Sec. IX we compute the 1/N cor-
rection to the improvement parameter, and finally in Sec
we discuss the meaning and relevance of our results.

II. THE EFFECTIVE HAMILTONIAN
AND THE GRAPH EXPANSION

Our starting point will be the usualN-componentf4 lat-
tice Hamiltonian ind dimensions:
©2003 The American Physical Society21-1
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H5(
x

F1

2 (
m

¹mf~x!•¹mf~x!1
1

2
m0

2f2~x!

1
1

4!
g0~f2~x!!2G , ~1!

where¹mf(x) is some~local! form of the lattice gradient; in
the standard nearest-neighbor formulation¹mf(x)5f(x
1m)2f(x).

Following Ref.@4# we define the rescaled couplings

b52
6m0

2

g0N
, g5

3

g0N

and introduce an auxiliary fielda in order to eliminate the
quartic term in the Hamiltonian.

After a trivial Gaussian integration the resulting effecti
Hamiltonian is

Heff5
N

2
@Tr Ln b~2¹m¹m1 ia!2 iba1ga2#. ~2!

In the limit g→0 this Hamiltonian reduces to the usu
effective large-N expression for the nonlinears model. In
the nearest-neighbor formulation, it is also known as
O(N) Heisenberg model; its large-N limit was investigated
in Ref. @5#.

The saddle-point condition on the effective Hamiltoni
leads to the so-called gap equation

b12gm0
25E

2p

p ddp

~2p!d

1

p̄21m0
2

, ~3!

where p̄2 is the Fourier transform of the lattice Laplacia
operator2¹m¹m , which in the nearest-neighbor case tak
the form p̂252(m(12cospm).

The gap equation allows for the elimination ofb in favor
of the new parameterm0 ~large-N inverse correlation length!
in the Feynman graph expansion.

In the large-N limit criticality corresponds to the vanish
ing of m0

2, and the criticality condition may then take th
form

bc5E
2p

p ddp

~2p!d

1

p̄2
,

corresponding to a finite value ofbc for all d.2.
The graph expansion for this model, in the formulati

based on the effective Hamiltonian, requires defining
~bare! propagatorD for the effective fielda; by standard
manipulations one obtains

D~k,m0 ,g![D21~k,m0 ,g!

5
1

2E2p

p ddp

~2p!d

1

p̄21m0
2

1

~p1 k̄!21m0
2

1g.

~4!
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The above approach is quite general, and it leads to a
tematic 1/N expansion of the correlation functions and of t
physical quantities for arbitrary values ofm0 andg.

However, we want to focus our attention on the critic
domain, and in particular we want to evaluate the coupl
g* such that the first nontrivial corrections to scaling tu
out to vanish in the computation of physical quantities in t
scaling region.

To this purpose it is convenient to parametrize the cut
dependence of correlation functions and renormalized c
plings in terms of the lattice spacinga, which can be made to
appear explicitly in calculations by a rescaling of the co
pling and momentum dependence.

Around criticality the dependence ona is not analytic, and
as a consequence we need asymptotic expansions in ord
identify the scaling and leading nonscaling contributions
any computable quantity.

The basic technique for asymptotic expansions in pow
of m0a is described in Ref.@6#; here we shall discuss it
applications to the cases of interest for the present pape

We only recall that, in order to regularize the generic l
tice integral

I ~k;m0a![E
2p

p ddp

~2p!d F~k;m0a,p!,

wherek is any collection of external momenta, we can ma
use of the formal identity

I ~k;m0a!5I lat~k;m0a!1I con~k;m0a!,

where

I lat~k;m0a!5E
2p

p ddp

~2p!d F~k;m0a,p!

2E
2`

1`

ad
ddp

~2p!dT(IR)F~k;m0a,pa!

and

I con~k;m0a!5adE
2`

1` ddp

~2p!d @F~k;m0a,pa!

2T(UV)F~k;m0a,pa!#.

TheT[T(IR)1T(UV) operation amounts to a Taylor serie
expansion of the integrand in powers ofm0a, T(IR), and
T(UV) corresponding, respectively to the IR and UV singu
terms in the expansion.

It is possible to prove that the expansions ofI lat ~the ‘‘lat-
tice contribution’’! and I con ~the ‘‘continuum contribution’’!
are individually and fully regular; the nonanaliticity of th
expansion is factored out in thead term multiplying the con-
tinuum contribution.

III. ASYMPTOTIC EXPANSION OF THE GAP EQUATION

For the purposes of the present paper and in order to s
an explicit example of the asymptotic expansion proced
1-2
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let us consider the gap equation in the large-N limit.
Let us assume a generic lattice Laplacian such thatp̄2

'p21cp41O(p6), where p2n5(mpm
2n : in the nearest-

neighbor versionc52 1
12 .

From the previously derived results we obtain the follo
ing relationship:

bc2b5m0
2a2F E

2p

p ddp

~2p!d

1

p̄2~ p̄21m0
2a2!

12gG .

Let us now define

G~p,m0a![
m0

2a2

p̄2~ p̄21m0
2a2!

and perform the relevant expansions up to the first few n
trivial terms:

TG~p,m0a!'
m0

2a2

~ p̄2!2
2

m0
4a4

~ p̄2!3
1O~m0

6a6!,

G~pa,m0a!'
1

a2F 1

p2 2
1

p21m0
2G2cp4F 1

~p2!2 2
1

~p21m0
2!2G

1O~a2!,

TG~pa,m0a!'
m0

2

a2 F 1

~p2!2 2
m0

2

~p2!3G
2m0

2cp4F 2

~p2!3 2
3m0

2

~p2!4G1O~m0
6 ,a2!.

By grouping together the IR singular terms we therefo
obtain the lattice contributions

2m0
2a2~g2g0!2m0

4a4d01O~m0
6a6!,

where we defined the following numerical constants:

g0[
1

2F2E
2p

p ddp

~2p!d

1

~ p̄2!2
1E

2`

1` ddp

~2p!d

1

~p2!2G ,

d0[E
2p

p ddp

~2p!d

1

~ p̄2!3
2E

2`

1` ddp

~2p!d S 1

~p2!3 23c
p4

~p2!4D .

~5!

On the other side, by grouping together the UV singu
terms, we obtain the following continuum contributions:

E
2`

1` ddp

~2p!d S ad22F2
1

p21m0
2 1

1

p2G
1adc p4F 1

~p21m0
2!22

1

~p2!2 22
m0

2

~p2!3G1O~ad12! D .

We can perform the continuum integrals by standard
mensional regularization techniques. We then finally find
04612
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bc2b'2b0~m0a!d2212~g2g0!m0
2a22

3

2
cb0m0

dad

2d0m0
4a41O„~m0a!d12

…, ~6!

where

b0[

GS 12
d

2D
~4p!d/2

.

From the asymptotic expansion of the gap equation
immediately learn the following lesson: it is possible
choose for the quartic couplingg the special valueg0 such
that the first nonscaling contribution to the large-N saddle-
point condition vanishes.

By this procedure we have identified the large-N critical
coupling for these versions of the model. In fact any chan
in the form of the local interaction, reflecting itself in th
detailedp dependence of the bare lattice massless propag
without changing its singular part, leads to a finite change
the numerical value ofg0 without affecting its formal repre-
sentation.

It is especially interesting to consider the class of mod
characterized by next-to-nearest-neighbor interactions,
whose propagator of the fundamental excitations is obtai
in the form

p̄25 (
m51

d S 6c1
5

2D28S c1
1

3D cospm12S c1
1

12D cos 2pm

5 p̂21S c1
1

12D p̂4,

where

p̂n[ (
m51

d

p̂m
n , p̂m[2 sin

pm

2
.

Note that c52 1
12 corresponds to the standard neare

neighbor interaction, whilec50 corresponds to theO(a2)
Symanzik tree-improved version of O(N) models@7#.

In three dimensions we have numerically explored
range2 1

12 <c<0: our results are presented in Figs. 1 and
Let us notice, in particular, that the choicec5

20.033 321 10 . . . corresponds to vanishingg0, and it is
therefore, at least in the large-N limit, an alternative version
of a spin model where the leading corrections to scal
are automatically made to vanish. In turn whenc50, we
obtain g050.003 328 210 . . . , which implies a small but
nonvanishing leading scaling violation, andd0
50.002 181 406 . . . . Compared to the standardc52 1

12

case this version has, however, the advantage of being
merically testable also by Monte Carlo methods, sinceg0
.0.
1-3



he
-

to

sio

re

gu

ear

CAMPOSTRINI, PARRUCCINI, AND ROSSI PHYSICAL REVIEW E67, 046121 ~2003!
IV. ASYMPTOTIC EXPANSION OF THE EFFECTIVE
PROPAGATOR

In order to perform an asymptotic expansion of t
O(1/N) contributions to physical quantities we must com
pute one-loop graphs involving the effective propaga
D(k,m0 ,g).

We therefore need to evaluate the asymptotic expan
of D or, more conveniently, ofD(k,m0 ,g). It is easy to
recognize, from the definition ofD and from the general rule
of the asymptotic expansion, that in general we may exp
the result in the form

D~k,m0a,g!5 (
n50

`

@An~k!~m0a!2n1Bn~k!~m0a!2n1d22#,

~7!

whereAn(k) have the form of lattice contributions~and only
A0 depends ong), while Bn(k) are continuum contributions
that can be analytically computed, e.g., in dimensional re
larization.

We shall not repeat the derivation~some details can be
found in Ref.@6#!, but only quote the relevant results:

FIG. 1. g0 vs c.

FIG. 2. d0 vs c.
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A0~k,g!5
1

2E2p

p ddp

~2p!d

1

p̄2

1

~p1 k̄!2
1g,

A1~k!52E
2p

p ddp

~2p!d

1

~ p̄2!2

1

~p1 k̄!2

1E
2`

1` ddp

~2p!d

1

~p2!2

1

k̄2
,

A2~k!5E
2p

p ddp

~2p!d

1

~ p̄2!3

1

~p1 k̄!2
1

1

2

1

~ p̄2!2

1

~~p1 k̄!2!2

2E
2`

1` ddp

~2p!d

1

~p2!3

1

k̄2
23c

p4

~p2!4

1

k̄2

1
1

~p2!2 C0~k!1
1

2 S 1

~p2!21
1

~~p1k!2!2D 1

~ k̄2!2
;

B0~k!5
b0

k̄2
, B1~k!52b0S 1

~ k̄2!2
1C0~k!2

3

2

c

k̄2D ,

~8!

where we defined

C~k,m0![
1

2d (
m

]2

]km
2

1

k̄21m0
2

,

C0~k![C~k,0![
1

2d (
m

]2

]km
2

1

k̄2
.

Trivial manipulations allow to expressAn(k) as pure lat-
tice integrals:

A1~k!5E
2p

p ddp

~2p!d

1

~ p̄2!2 F 1

k̄2
2

1

~p1 k̄!2G12
g0

k̄2
,

A2~k!5E
2p

p ddp

~2p!dF 1

~ p̄2!3

1

~p1 k̄!2
2

1

~ p̄2!3

1

k̄2

2
1

~ p̄2!2
C0~k!G1

d0

k̄2
22g0C0~k!

1E
2p

p ddp

~2p!dF1

2

1

~ p̄2!2

1

@~p1 k̄!2#2
2

1

2

1

~ p̄2!2

1

~ k̄2!2

2
1

2

1

@~p1 k̄!2#2

1

~ k̄2!2G22
g0

~ k̄2!2
. ~9!

From our general considerations it should be by now cl
that we shall also need a different expansion ofD, homoge-
neous in powers ofm andk.

Without delving into the details, we find that
1-4
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D~ka,m0a,g!'
1

2
ad24E

2`

1` ddp

~2p!d

1

p21m0
2

1

~p1k!21m0
2

1~g2g0!1O~ad22!.

Notice that the integral can be analytically computed
all dimensions, and the final result is

D~ka,m0a,g!'d0S 1

4
k2a21m0

2a2D d/222

3 2F1S 22
d

2
,
1

2
,
3

2
,
1

j2D1g2g0[Dc ,

~10!

whered05 1
2 (12d/2)b0 , 2F1 is the Gauss hypergeometr

function, andj5A114m0
2/k2.

Let us, in general, denote by the label ‘‘c’’ the quantities
occurring in the leading order in the homogeneous~con-
tinuum! expansion ofD, and in particulargc[g2g0.

Following Ref.@8#, we can exploit identities between hy
pergeometric functions to recast the above result into
form

Dc5a0jd23~ka!d241gc1
b0

k2a2j2

3 2F1S d21

2
,1,

d

2
,12

1

j2D ~m0a!d22, ~11!

where

a0[
1

2

GS d

2
21D 2

GS 22
d

2D
~4p!d/2G~d22!

.

For d53, Eq. ~11! reduces to

Dc5
1

16ak
1gc2

1

8pak
arccot

k

2m0
.

Equation~11! is especially appropriate for the asympto
expansion ofDc , because all the nonanalytic dependence
m0a is explicitly factored out in the last term. In particula
~after a rescalingka→k), we obtain the following behav
iors:

A0c5a0~k2!d/2221gc ,

Anc5
1

n!

4nGS d21

2 D
GS d21

2
2nD a0~k2!d/2222n.

Finally notice also that the zero-momentum value ofD is
related to the derivative of the gap equation with respec
the mass, and we can obtain the relationship
04612
e

n

o

D0[D~0,m0a,g!'d0~m0a!d24

1gc2
3d

8
cb0~m0a!d222d0m0

2a2, ~12!

and as a consequence

D0c[d0~m0a!d241gc .

V. ASYMPTOTIC EXPANSION OF THE RENORMALIZED
COUPLING

We now recall from the literature the expression of t
O(1/N) contribution to the~unrenormalized! self-energy of
the fundamental quanta:

S1~p,m0!5S1a~p,m0!1S1b~p,m0!,

where

S1a~p,m0!5E
2p

p ddk

~2p!d

D~k,m0 ,g!

~p1 k̄!21m0
2

,

S1b~m0!5
1

2
D~0,m0 ,g!E

2p

p ddk

~2p!d

3D~k,m0 ,g!
]

]m0
2 D21~k,m0 ,g!.

Again we might perform an asymptotic expansion of th
expression, on the lines traced in Ref.@6#, recovering in the
scaling limit the ~unrenormalized! continuum contribution,
and in principle we might evaluate the first nonleading co
tribution.

However, for our purposes it is much more convenient
work directly with quantities chosen in such a way that
renormalization effects are automatically removed, i
quantities whose scaling limit is a finite, renormalizatio
group invariant, amplitude.

The simplest such object is the so-called ‘‘renormaliz
coupling’’ gr , whose continuum~scaling! valuegr* has been
computed toO(1/N) in Ref. @4#.

Actually the formal expression derived in Ref.@4# is cor-
rect also for the lattice versions of the model, when co
tinuum propagators are replaced by their lattice counterpa
Parametrizing the result in terms of the renormalized m
m, we therefore obtain

gr~m,g!5md24D~0,m,g!F11
1

N
gr

(1)~m,g!1OS 1

N2D G ,
~13!

wheregr
(1) is given by
1-5
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gr
(1)~m,g!5D~0,m,g!

]D21~0,m,g!

]m2 S S1a~0,m!1S1b~m!

2m2
]S1a

]p2 U
0
D 1S 2

]S1a~0,m!

]m2
1

]S1b~m!

]m2

22
]S1a

]p2 U
0

22D21~0,m,g!T~m!D , ~14!

and we defined

T~m0!5E
2p

p ddk

~2p!dS D~k,m0 ,g!

k̄21m0
2 D 2

.

It is now a matter of trivial algebraic manipulations
show that the expression forgr

(1) can be cast into the form

gr
(1)5

1

D0
E

2p

p ddk

~2p!d H 1

D S 1

2

]

]m2F ]D

]m2 1
2D0

k̄21m2G
2

D0

~ k̄21m2!2
2F2D01m2

]D0

]m2GCD
2

1

2 D2 F ]D

]m21
2D0

k̄21m2G 2J . ~15!

In the asymptotic expansion ofgr
(1) we may again identify

a continuum and a lattice contribution.
r

ng

-

th
rie

04612
Renormalization-group theory insures us about the
pected properties of these contributions. In particular,
leading continuum term should be finite, and should the
fore require no UV counterterms. Its evaluation will, how
ever, allow us to identify the IR counterterms needed in or
to regularize the lattice term.

The lattice contribution in turn should not affect the lea
ing ~scaling! order, sincegr* is an invariant amplitude which
should not depend on the detailed form of the Hamiltoni
In turn, trivial power counting ina shows us that the firs
correction to scaling is generated by the leading lattice c
tribution, which isO„(ma)42d

….
We can prove the following identities, corresponding

similar results of Ref.@4#:

]Dc

]m2 5
2

k214m2@~d23!Dc2D0c1~42d!gc#,

]D0c

]m2
5S d

2
22DD0c2gc

m2
,

Cc5
1

~k21m2!2 S 4

d

k2

k21m2 21D .

As a consequence we obtain in leading order the follo
ing continuum contribution, depending on the single~dimen-
sionless! variablex[gc(ma)42d:
gr ,con
(1) ~x!'

1

D0c
E

2`

1` ddk

~2p!dH 22F d23

k214m2 1
gc

Dc

42d

k214m2 1
D0c

Dc

3m2

~k21m2!~k214m2!G
2

12
~d23!~d25!

~k214m2!2

1
gc~42d!

Dc
F 2~d25!

~k214m2!21
3

2

1

~k214m2!~k21m2!
1

1

2 S 12
4

dD 1

~k21m2!2G1
2gc

Dc

~42d!m2

d~k21m2!3

1
D0c

Dc

m2

k21m2F 6~d25!

~k214m2!2 1
3

2

d28

~k214m2!~k21m2!
1

2

~k21m2!2G J , ~16!
g

which can be shown to correspond exactly to the result p
sented in Ref.@4#.

In particular the fixed-point value is obtained by setti
x50, corresponding togc50, that is the condition for the
removal of the leading nonscaling behavior in the largeN
limit.

From the above result we may immediately read off
structure of counterterms, just by taking the power se
expansion in powers ofm2, and in particular by replacingDc
with A0c andD0c with d0(ma)d24. The resulting~singular!
expression is
e-

e
s

~ma!42d

d0
E

2`

1` ddk

~2p!dH 22Fd23

k2 1
gc

A0c

42d

k2 G2

12
~d23!~d25!

~k2!2 12
gc

A0c
S d242

1

dD 42d

~k2!2J .

Let us now compute the lattice contribution. By applyin
the already defined asymptotic expansions, we obtain
1-6
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]D

]m2 1
2D0

k̄21m2
'A112

gc

k̄2
2b0S d

2
C01

1

~ k̄2!2D md22

12S A22
gc

~ k̄2!2
2

d0

k̄2D m21O~md!

and

1

2

]

]m2F ]D

]m2 1
2D0

k̄21m2G2
D0

~ k̄21m2!2
2F2 D01m2

]D0

]m2GC
'A22

d0

k̄2
22gcS C01

1

~ k̄2!2D 1O~md22!.

Notice that the most singular contributions,O(md24), have
been removed in the above combinations.

Let us now find out the leading IR singularities of th
terms appearing in the integral representinggr , lat

(1) . We must
only notice that, for allAn(k), the singular behavior when
k→0 is determined by the corresponding behavior
Anc(k), with corrections whose singularity is depressed b
factor of k2. As a consequence we obtain in the IR limit

1

A0
S A112

gc

k2D→ 2

k2 Fd231~42d!
gc

A0c
G ,

1

A0
FA22

d0

k̄2
22gcS C01

1

~ k̄2!2D G
→ 2

~k2!2 F ~d23!~d25!1S d242
1

dD ~42d!
gc

A0c
G .

~17!

These singularities are perfectly matched by the te
coming from theT(IR) expansion of the continuum contribu
tion, as expected. As a consequence we are able to w
down an exact, finite representation of the leading latt
contribution togr

(1) , taking the form

gr , lat
(1) ~m,gc![

~ma!42d

d0
dg(1)~gc!, ~18!

where

dg(1)~gc![E
2p

p ddk

~2p!dH 1

A0
FA22

d0

k̄2
22gcS C01

1

~ k̄2!2D G
2

1

2 F 1

A0
S A112

gc

k̄2D G 2J 2E
2`

1` ddk

~2p!d

2

~k2!2

3S F ~d23!~d25!1S d242
1

dD ~42d!
gc

A0c
G

2Fd231~42d!
gc

A0c
G2D . ~19!
04612
f
a

s

ite
e

It is worth observing thatgr ,con
(1) (x) showed a nonanalytic

ity whose leading dependence was proportional tox ln x.
Correspondingly,dg(1)(gc) has a nonanalyticgcln gc depen-
dence. The coefficients of these singularities match prop
in order to reproduce an overall dependence proportiona
gc(ma)42dln ma, as expected from general renormalizatio
group arguments because of the anomalous dimension o
leading irrelevant operator.

VI. INTEGRAL REPRESENTATION
FOR THE GAP EQUATION

For the purpose of actual numerical calculations one m
find an efficient way of performing lattice momentum int
grals. In practice this may be obtained by resorting to pa
metric ~Feynman and Schwinger! representations of the lat
tice propagators. These representations are especially u
in the case corresponding to the standard nearest-neig
Hamiltonian.

Let us first consider the integral appearing in the g
equation

b12gm0
25E

2p

p ddp

~2p!d

1

p̂21m0
2
[J~m0

2!.

Introducing Schwinger’s proper time representation,
obtain

J~m0
2!5E

0

`

dae2am0
2E

2p

p ddp

~2p!d

3expF22a(
m

~12cospm!G
5E

0

`

dae2am0
2
@e22aI 0~2a!#d, ~20!

whereI 0 is the standard modified Bessel function, admitti
for large values of its argument in the following asympto
expansion:

e22aI 0~2a!'
1

~4pa!1/2 (
n50

` ~21!nGS n1
1

2D
n!GS 1

2
2nD

1

~4a!n .

By a proper change of variables the numerical evaluation
the above integral is now possible even in the smallm0

2 re-
gime.

Whend53 it is also possible to obtain an analytical e
pression forJ(0) @5#, which was first derived in Ref.@9#:

bc5J~0!5
k211

p2 K2~k!, ~21!
1-7
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whereK is the complete elliptic integral of the first kind an
k5(22A3)(A32A2), and the resulting numerical value
bc50.252 731 009 858 663 . . .

We can computeJ(m0
2) as an asymptotic expansio

aroundm0
250:

J~m0
2!5 (

n50

`

anm0
2n1bnm0

2n1d22 . ~22!

It is conceivable that whend53 the coefficientsan of the
expansion can be computed analytically in terms of ellip
integrals, but we contented ourselves with a numerical
culation of the ‘‘lattice terms’’ appearing in the analytic pa
of the expansion, while it is always possible to obtain clos
form expressions for the coefficientsbn of the nonanalytic
part.

We can obtain explicit expressions for the coefficients
expansion~22! by subtracting a proper number of terms
the asymptotic expansion of the Bessel function raised to
power d. Let us label the coefficients of this expansion a
cording to the equation

@e22aI 0~2a!#d'
1

~4pa!d/2 (
n50

`

cn~d!a2n; ~23!

the coefficients can be computed recursively from the eq
tions

c0~d!51,

cn~d!5
1

n (
k51

n

~kd2n1k!

~21!kGS 1

2
1kD

4kk!GS 1

2
2kD cn2k . ~24!

Let us add to the integrand in Eq.~20! the formally van-
ishing term

2
1

~4pa!d/2 (
n50

`
~2am0

2!n

n! (
m50

n21

cm~d!a2m

1
1

~4pa!d/2 (
n50

`

cn~d!a2n (
m5n11

`
~2am0

2!m

m!
,

where we have only interchanged the order of the sum
tions in the two contributions. It is now possible to group t
first contribution with the original integrand and recogni
that the resulting combination defines an analytic function
m0

2, since each coefficient,
04612
c
l-

d

e
-

a-

a-

f

an[E
0

`

da
~2a!n

n! H @e22aI 0~2a!#d

2
1

~4pa!d/2 (
m50

n21

cm~d!a2mJ , ~25!

in the corresponding power series expansion is a finite,
and IR regulated integrals for anyd in the range 2,d,4. In
turn, the integration of the second contribution may be r
resented, after trivial resummations and rescalings, in
form

1

~4p!d/2 (
n50

`

cn~d!kn~d!~m0
2!n1d/221,

where

kn~d![E
0

`

dx x2n2d/2Fe2x2 (
m50

n
~2x!m

m! G
are finite UV and IR regulated integrals in the range 2,d
,4; integrating by parts we obtain a recursive equation
kn , which can be solved immediately, obtainingkn5G(1
2d/22n), and consequently

bn5
1

~4p!d/2
cn~d!GS 12

d

2
2nD . ~26!

It is now trivial to setd53 in Eq. ~24! to obtain an explicit
recursive expression forbn .

To compute numerical values ofan in d53, it is not
practical to use Eq.~25!, given the slow convergence of th
integration for largea. We found it more convenient to spli
the a integration in Eq.~20! at a51. For a<1 we can
expand in powers ofm0

2 under the integration sign and inte
grate term by term. Fora>1, we subtractn1 l terms of
expansion~23!, expand the integrand in powers ofm0

2 up to
O(m0

2n), and integrate term by term; while the resulting i
tegrals converge for anyl>0, it is useful to setl>3 to
ensure fast convergence of the integration for largea. The
integral of the regulator can be computed analytically
terms of the incompleteG function, and the singular part o
its asymptotic expansion reproduces the singular part of
pansion~22!.

Collecting all numerical and analytical results, we obta
for d53 the following asymptotic expansion:
1-8
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J~m0
2!5bc2

1

4p
m020.012 164 158 583 022m0

21
1

32p
m0

310.000 837 762 406 062 93m0
42

11

2560p
m0

5

20.000 066 743 211 781 194m0
61

281

430080p
m0

715.788 448 812 444 531026m0
82

71

655360p
m0

9

25.320 777 180 47531027m0
101

7783

403 701 760p
m0

1115.107 544 566 04431028m0
122

70289

193 776 844 80p
m0

13

1O~m0
14!, ~27!
t
ti

ion

ble

nd
,

t

rid;
y,
.
e
n
d

ith
g
pan-

the
an-
which gives an error smaller than 10214 in the range 0
<m0

2<0.1.
It is immediate to extract from this expansion the 3d

large-N nearest-neighbor model values

g0'20.006 082 079 291 511 3,

d0'0.000 837 762 406 062 93.

The asymptotic expansion ofJ (n)(m0
2), thenth derivative

of J(m0
2) with respect tom0

2, is easily obtained from the
above expression. There is an obvious precision loss, bu
the above-mentioned range the error in the second deriva
is still smaller than 10210.

In the following, we will need to computeJ (n) in a fast
and accurate way, for generic values ofm0

2; to this purpose,
we tabulatedJ for values ofm0

2 on a uniform grid with step
h51023, and computeJ (n)(m0

2) by (n14)-point Lagrange
interpolation.

VII. INTEGRAL REPRESENTATIONS FOR THE
EFFECTIVE PROPAGATOR

Let us now recall from Ref.@6# the following basic result:

D~k,m0 ,0!5
1

2E0

1

dxE
2p

p ddq

~2p!d

3
1

Fm0
212(

m
~12zmcosqm!G2 ,

wherezm5A12x(12x) k̂m
2 .

Using Schwinger representation we then obtain

D~k,m0 ,0!5
1

2E0

1

dxE
0

`

daae2am0
2E

2p

p ddq

~2p!d

3expF22a(
m

~12zm cosqm!G
5

1

2E0

1

dxE
0

`

daae2am0
2

)
m

@e22aI 0~2azm!#.

~28!
04612
in
ve

Alternatively we might use the Schwinger representat
directly and obtain

D~k,m0 ,0!5
1

2E0

`

dsE
0

`

dte2(s1t)m0
2

)
m

3@e22(s1t)I 0~2As21t212st coskm!#

that can be reduced to the previous one by the varia
changes5xa, t5(12x)a.

The direct numerical evaluation of Eq.~28!, and espe-
cially of its derivatives with respect tom0

2, in d53 is diffi-
cult, particularly for small values ofk or m0; the conver-
gence can be improved dramatically by adding a
subtracting a symmetric combination of Bessel functions

D~k,m0 ,0!5
1

2E0

1

dxE
0

`

daae2a(61m0
2)F)

m
I 0~2azm!

2I 0
3~2a z̄!G2

1

2E0

1

dx
1

z̄ 2
J8S m0

216

z̄
21D ,

~29!

wherez̄5 1
3 (z11z21z3); the subtracted integral and its firs

few derivatives with respect tom0
2 can now be computed

accurately by Gauss-Legendre integration on a small g
the integration inx of J8 and of its derivatives is also eas
once a few singular terms of Eq.~22! have been subtracted

In order to identify the lattice contributions to th
asymptotic expansion ofD we must expand the integrand i
powers ofm0

2. The IR singularities turn into unsuppresse
positive powers ofa, present in the large-a regime when
zm→1. These singularities become worse and worse w
increasing powers ofm0

2. In order to classify them accordin
to their degree we need to consider the homogeneous ex
sion of the integrand in powers ofa21 and of A12zm

2

[x(12x) k̂m
2 .

Recalling once more the asymptotic expansion of
Bessel function, we can write down the homogeneous exp
sion in the form
1-9
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)
m

e22aI 0~2azm!'
e2ax(12x) k̂2

~4pa!d/2

3 (
n50

`

Cn@d,ax~12x!k̂m
2 #a2n,

~30!

where in turn

Cn@d,ax~12x!k̂m
2 #[ (

m50

2n

gnm~d!@ax~12x!k̂2#m ~31!

andgnm(d) may show a dependence on the ratiosk̂2p/( k̂2)p.
Repeating the procedure developed in the preceding

tion we may now obtain the following decomposition:

D~k,m0,0!5 (
n50

`

Rn~k!m0
2n1Ds~k,m0!, ~32!

where

Rn~k![
~21!n

2n! E
0

1

dxE
0

`

da an11F)
m

e22aI 0~2azm!

2
e2ax(12x) k̂2

~4pa!d/2 (
m50

n

Cma2mG ~33!

is that part ofAn(k)[Rn(k)1Sn(k) which shows a regula
dependence onk in the k→0 limit, and

Ds~k,m0![
1

2E0

1

dxE
0

`

da
e2ax(12x) k̂2

~4pa!d/2

3 (
n50

` Fe2am0
2
2 (

m50

n21
~2am0

2!m

m! GCna12n

~34!

is a well-defined quantity, which includes all the singu
dependence onk and admits an asymptotic expansion in t
form

Ds~k,m0!' (
n50

`

@Sn~k!m0
2n1Bn~k!m0

2n1d22#.

In order to computeDs(k,m0), let us notice that it may be
also expressed in the form

Ds~k,m0!5 (
n50

`

(
m50

2n

gnm~d!I nm~m0
2!, ~35!

where

I nm~m0
2![

1

2E0

1

dx@x~12x!k̂2#mE
0

`

da
e2ax(12x) k̂2

~4pa!d/2

3Fe2am0
2
2 (

m50

n21
~2am0

2!m

m! Ga11m2n ~36!

enjoys the property
04612
c-

r

dInm

dm0
2

52I n21,m .

Therefore, we only need to evaluate

I 0m~m0
2![

1

2E0

1

dx@x~12x!k̂2#m

3E
0

`

dae2ax(12x) k̂22am0
2 a12d/21m

~4p!d/2

5
1

2

GS 22
d

2
1mD

~4p!d/2 E
0

1

dx
@x~12x!k̂2#m

@m0
21x~12x!k̂2#22d/21m

5
1

2

GS 22
d

2D
~4p!d/2

~2 k̂2!mS ]

] k̂2D m

3E
0

1 dx

@m0
21x~12x!k̂2#22d/2

. ~37!

A trivial comparison with previous results shows that t
last integral is directly related to the continuum propaga
by the replacementk2→ k̂2, and therefore, settingĵ251
14m0

2/ k̂2, we obtain

I 0m~m0
2!5~2 k̂2!mS ]

] k̂2D mFa0ĵd23~ k̂2!d/222

1
b0

k̂2ĵ22F1S d21

2
,1,

d

2
,12

1

ĵ2D m0
d22G , ~38!

where we must appreciate that the above expression is n
rally decomposed into an analytic and a nonanalytic te
which implies that we can immediately relate all coefficien
Sn(k) to the derivatives with respect tok̂2 of ĵd23( k̂2)d/222.

Straightforward manipulations lead to the general re
tionship

Sn~k!5
a0

n!
~ k̂2!d/222S 4

k̂2D n

(
p50

n ~21!pGS d21

2 D
GS d21

2
2n1pD S k̂2

4
D p

3 (
q50

2p ~21!qGS d

2
212n1pD

GS d

2
212n1p2qD gpq~d!. ~39!

The above expression brings into evidence a peculiar
ture exhibited by the functionsSn(k) when d53. In this
case the arguments of the functionG(12n1p) appearing in
1-10
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the denominator are integer nonpositive numbers when
pÞn, and therefore the corresponding contributions to
sum vanish, giving

Sn~k!5~21!n
a0

n!
~ k̂2!21/2(

q50

2n ~21!qGS 1

2D
GS 1

2
2qD gnq~3!.

~40!

When d53 the singular contributions toAn(k) are pro-
portional to (k̂2)21/2 for all n, and this is basically a conse
quence of the vanishing dependence onj in the analytic part
of the continuum propagator.

The simplest example of this procedure is offered by
integral representation ofA0(k,0),

A0~k,0!5a0~ k̂2!d/2221R0~k!, ~41!

where

R0~k![
1

2E0

1

dxE
0

`

da aF)
m

e22aI 0~2azm!

2
e2ax(12x) k̂2

~4pa!d/2 G . ~42!

This representation merits a few observations. Notice
the explicit term might be simply obtained from the expre
sion of A0c by the replacementk2→ k̂2, and therefore it re-
produces exactly the singular behavior ofA0 when k→0.
MoreoverR0(k) has, by construction, a finite limit whenk
→0. It is easy to check thatR0(0)52g0 , thus verifying
explicitly that the choiceg5g0 leads to theO(a42d) im-
provement of the lattice massless propagator.

By the same technique, we obtain

A1~k!5a0F2~d23!

k̂2
1

~62d!~42d!

16

k̂4

~ k̂2!2
2

~82d!

16 G
3~ k̂2!d/2221R1~k!, ~43!

where

R1~k![2
1

2E0

1

dxE
0

`

da a2F)
m

e22aI 0~2azm!

2
e2ax(12x) k̂2

~4pa!d/2 S 11
d

16a
1

1

4
x~12x!k̂2

2
1

4
ax2~12x!2k̂4D G . ~44!

Again we notice that the explicit term reproduces the lead
singularities, and moreoverR1(0)52d0.

We also mention the result forA2(k), since it will be
needed in the evaluation ofdg(1):
04612
er
e

e

at
-

g

A2~k!5
1

2
a0F a2,0

~ k̂2!2
1

a2,1

k̂2
1a2,2G ~ k̂2!d/2221R2~k!,

~45!

where

a2,054~d23!~d25!,

a2,15
~d23!~d212!

8
1

~d23!~d26!~d28!

8

k̂4

~ k̂2!2
,

a2,25
~d216!~d28!

512
1

~d24!~d26!~d28!

256

k̂4

~ k̂2!2

1
~d24!~d26!~d28!

64

k̂6

~ k̂2!3

1
~d24!~d26!~d28!~d210!

512

~ k̂4!2

~ k̂2!4
,

and we obtain

R2~k![
1

4E0

1

dxE
0

`

da a3F)
m

e22aI 0~2azm!

2
e2ax(12x) k̂2

~4pa!d/2
@11r 2,1~k!1r 2,2~k!#G , ~46!

where in turn

r 2,1~k!5
d

16a
1

1

4
x~12x!k̂22

1

4
ax2~12x!2k̂4,

r 2,2~k!5
d~d18!

512a2 1
1

64a
~d12!x~12x!k̂2

1
1

64
@2~ k̂2!21~82d!k̂4#x2~12x!2

2
1

16
ax3~12x!3~2k̂61 k̂4k̂2!

1
1

32
a2x4~12x!4~ k̂4!2.

An obvious relationship exists between the valuesRn(0)
and the coefficients of the analytic part of the asympto
expansion of the functionJ8(m0

2). One easily finds that
Rn(0)5 1

2 (n11)an11.
It should be by now clear that a trivial generalization

the same technique allows for an explicit, albeit more cu
bersome, evaluation of all the functionsBn(k). We could
verify that the correct expressions forB0(k) and B1(k) are
reproduced, and we computedB2(k) for a better accuracy
check of our numerical estimates. The result is too cumb
some to be reported here.
1-11
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In practice,A0 , A1, andA2 can be computed numericall
in d53 exploiting subtraction~29!; since

e26tF)
m

I 0~2azm!2I 0
3~2a z̄!G

'e2ax(12x) k̂2
x2~12x!2

3k̂42~ k̂2!2

48~4pa!3/2
, ~47!

the subtraction is enough to regularizeA1 and A2. Let us
consider, e.g.,A1; by straightforward manipulations we ob
tain

A1~k!52
1

2E0

1

dxH E
0

1

da a2e26a

3F)
m

I 0~2azm!2I 0
3~2a z̄!G1

1

z̄3
J9S 6

z̄
21D

2
1

16p@x~12x!k̂2#3/2J ; ~48!

FIG. 3. gr
(1) ~solid line! andgr ,con

(1) 1gr , lat
(1) ~dashed line! vs m for

gc50.

FIG. 4. gr
(1) ~solid line! andgr ,con

(1) 1gr , lat
(1) ~dashed line! vs m for

gc52g0, i.e., for the nonlinears model.
04612
it is useful to over-regulate thex integration by subtracting
the right-hand side of Eq.~47!, integrated overa. ForA2 we
follow the same procedure; the subtractions are more c
plicated and not worth writing here. The computation ofA0
is similar but of course easier.

We verified explicitly thatAn , computed in this way, and
Bn are consistent with Eq.~7! for n<2.

VIII. NUMERICAL RESULTS

It is worthwhile to present a selection of the numeric
results that we obtained ind53 for the nearest-neighbo
formulation (c52 1

12 ).
In Figs. 3, 4, and 5 we comparegr

(1)(m,gc), obtained by
direct evaluation of Eq.~15!, with gr ,con

(1)
„gc(ma)42d

…

1gr , lat
(1) (m,gc), obtained from Eqs.~16!, ~18!, and ~19!, for

three values ofgc ; of special interest is the valuegc
52g0, i.e., g50, corresponding to the nonlinears model.

dg(1)(gc) is plotted in Fig. 6; of special interest is th
value

dg(1)~0!50.004 969 9 . . .

FIG. 5. gr
(1) ~solid line! andgr ,con

(1) 1gr , lat
(1) ~dashed line! vs m for

gc50.1.

FIG. 6. dg(1) vs gc .
1-12
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IX. CONSTRUCTION OF THE IMPROVED HAMILTONIAN

As we mentioned in the Introduction, the improveme
procedure aims at a systematic cancellation of the nex
leading effects in the invariant amplitudes. Th
renormalization-group theory insures us that a single cho
of g exists such that this cancellation occurs in all amp
tudes. It is therefore sufficient to find the valueg5g* , for
which the cancellation occurs in the renormalized couplin

In the context of the 1/N expansion we may assumeg* to
admit an expansion in powers of 1/N:

g* 5g0* 1
1

N
g1* 1OS 1

N2D .

We have already recognized in Sec. III thatg0* 5g0. We
may therefore define

gc* [g* 2g0'
1

N
g1* .

Substituting this result in the expression ofgr and ex-
panding in powers ofm we then obtain

gr~ma,g* !'
1

d0
F11

1

N
gr ,con

(1) ~0!1
1

N

1

d0
~dg1~0!2g1* !

3~ma!42d1O~m2a2!1OS 1

N2D G .
We then recognize that the condition for the cancellat

of the first nonleading contribution is

g1* 5dg1~0!

[E
2p

p ddk

~2p!dF 1

Ã0
S A22

d0

k̄2D 2
1

2 S A1

Ã0
D 2G

1E
2`

1` ddk

~2p!d

4~d23!

~k2!2 ,

whereÃ0[A0(k,g0).

X. CONCLUSIONS

In the case of the three-dimensional O(N) models with
standard nearest-neighbor interactions, our analytical res
led us to the prediction

g* >20.006 082 071
1

N
0.004 969 91OS 1

N2D . ~49!
ys

cl

04612
t
o-

e
-

.

n

lts

We might now obtain an estimate for the valueNc for which
g* vanishes. The numerical value of the present estimat
admittedly not very promising, but, as we mentioned in t
Introduction, the essential feature ofg1* is its positive sign,
suggesting thatNc may exist and possibly be within th
range of convergence of the 1/N expansion.

The physical interpretation ofNc amounts to the state
ment that, for this special value ofN, the nearest-neighbo
lattice version of the nonlinears model (g50) in three
dimensions shows the absence of leading irrelevant opera
in the expansion of the Hamiltonian into scaling fields.

For all valuesN<Nc , one would getg* .0, and as a
consequence one may proceed to analyze the models in
improved version, both by numerical Monte Carlo metho
and by perturbative expansion techniques. Numerical e
dence shows that this is actually the case for the physic
interesting casesN<3. It might be interesting to perform a
numerical study with the purpose of estimatingNc . A naive
extrapolation from the known numerical values ofg* (N),

g* ~1!50.0159~3!, g* ~2!50.0078~2!,

g* ~3!50.0043~4!, g* ~4!50.0021~7!,

obtained from Refs.@1,10–12#, respectively using the for-
mula g5bc

2/(8lN), suggestsNc.5 or 6. If this value is to
be predicted by the 1/N expansion, large contributions mu
come for higher-order terms. They are, however, not un
pected, since the first coefficients seem to be particula
small, due to peculiar cancellations in the integrals.

Concerning the extension of the 1/N expansion itself to
the regionN,Nc , we must cautiously mention that som
dramatic change in the analytical behavior of the funct
g* (N) may certainly occur atN5Nc . It is not possible to
perform a strong-coupling expansion of the models wheng
,0, as one may immediately realize from an analysis of
gap equation.

We would like to mention that the numerical evaluation
higher orders of the 1/N expansion is technically not beyon
reach, along the lines traced by Ref.@13# and exploiting the
more accurate results for the effective propagator obtaine
the present paper.

Finally, as a consequence of the discussion of the prev
sections, it should be clear that, in the class of models w
next-to-nearest-neighbor interactions, it is always possibl
find a choice of Hamiltonian parameters such that impro
ment becomes possible for arbitrary values ofN.
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