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Abstract

We discuss some recent determinations of the equation of state for the XY and the Heisenberg
universality class.
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In the last few years, there has been a signi7cant progress in the determination of the
critical properties of O(N ) models; see, e.g., Ref. [1] for a comprehensive review. First
of all, high-precision estimates of critical exponents and of several high-temperature
universal ratios have been obtained by using improved Hamiltonians. Improved models
are such that the leading nonanalytic correction is absent in the expansion of any
thermodynamic quantity near the critical point. The idea is quite old [2–4]. However,
the early attempts that used high-temperature techniques were not able to determine
improved models with high accuracy, so that 7nal results did not signi7cantly improve
the estimates of standard analyses. Recently [5–12], it has been realized that Monte
Carlo simulations using 7nite-size scaling techniques are very e>ective for this purpose,
obtaining accurate determinations of several improved models in the Ising, XY , and
O(3) universality class. Once an improved model is accurately determined, one can use
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standard high-temperature techniques in order to obtain very precise determinations of
the critical exponents. For instance, for the experimentally relevant cases, we obtained
[10,12–14]:

� = 1:2373(2); 	 = 0:63012(16); N = 1 ;
� = 1:3177(5); 	 = 0:67155(27); N = 2 ;
� = 1:3960(9); 	 = 0:7112(5); N = 3 :

Beside the critical exponents, experiments may determine several other universal prop-
erties. We consider here the equation of state that relates the magnetic 7eld H̃ , the
magnetization M̃ , and the reduced temperature t ≡ (T − Tc)=Tc. In a neighborhood of
the critical point t = 0, H̃ = 0, it can be written in the scaling form

H̃ = (Bc)−�M̃M �−1f(x); x ≡ t(M=B)−1=� ; (1)

where Bc and B are the amplitudes of the magnetization on the critical isotherm and
on the coexistence curve,

M = BcH 1=�; t = 0 : (2)

M = B(−t)�; H = 0; t ¡ 0 : (3)

With these choices, the coexistence line corresponds to x=−1, and f(−1)=0, f(0)=1.
Alternatively, one can write

H̃ = k1
M̃
M

|t|��F±(|z|); z ≡ k2Mt−�; (4)

where F+(z) applies for t ¿ 0 and F−(|z|) for t ¡ 0. The constants k1 and k2 are 7xed
by requiring

F+(z) = z +
1
6

z3 +
∑
n=3

r2n

(2n − 1)!
z2n−1 (5)

for z → 0 in the high-temperature phase. The behavior of the functions f(x) and
F−(|z|) at the coexistence curve depends crucially on N . For N=1 they vanish linearly.
On the other hand, for N ¿ 2, the presence of the Goldstone modes implies in three
dimensions [15–19]:

f(x) ≈ cf(1 + x)2 : (6)

The nature of the corrections to this behavior is not clear [17–20]. In particular, loga-
rithmic terms are expected [20].
In order to obtain approximations of the equation of state, we parameterize the

thermodynamic variables in terms of two parameters � and R:

M = m0R�m(�); t = R(1− � 2); H = h0R��h(�) : (7)

Here, m0 and h0 are nonuniversal constants, m(�) and h(�) are odd functions of �,
normalized so that m(�)=�+O(� 3) and h(�)=�+O(� 3). The variable R is nonnegative
and measures the distance from the critical point in the (t; H) plane, while the variable
� parameterizes the displacement along the lines of constant R. In particular, � = 0
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Fig. 1. Graph of the function f(x) for N = 2 (left) and N = 3 (right). For N = 2 we also report the Monte
Carlo results of Ref. [27].

corresponds to the high-temperature line t ¿ 0, H = 0, � = 1 to the critical isotherm
t = 0, and � = �0, where �0 is the smallest positive zero of h(�)—it must satisfy of
course �0 ¿ 1—to the coexistence line. Such a mapping has been extensively used in
the Ising case and provides accurate approximations if one uses low-order polynomials
for m(�) and h(�) [13,21–25]. In systems with Goldstone bosons we must additionally
ensure condition (6). For this purpose, it is enough to require [26] h(�) ∼ (�0 − �)2

for � → �0.
In Refs. [10,12,26] we obtained the equation of state in the scaling limit by using

two di>erent approximation schemes for the functions m(�) and h(�):

scheme (A): m(�) = �

(
1 +

n∑
i=1

ci� 2i

)
;

h(�) = �(1− � 2=�2
0)

2 ; (8)

scheme (B): m(�) = � ;

h(�) = �(1− � 2=�2
0)

2 −
(
1 +

n∑
i=1

ci� 2i

)
: (9)

The constants ci and �0 were 7xed by requiring F+(z) to have expansion (5), with
the coeHcients determined by high-temperature expansion techniques. Since we were
able to compute accurately only r6 and r8, we used the two schemes for n = 0 and 1.
The results, especially those for N =3, see Fig. 1, are quite independent of the scheme
used, indicating the good convergence of the method.
By using the equation of state, one can determine several amplitude ratios. We

mention here the experimentally relevant

U0 =
A+

A− ; R# =
C+B�−1

B�
c

; (10)
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where C+ and A± are related to the critical behavior of the susceptibility # and of the
speci7c heat C for H = 0:

# = C+t−�; t ¿ 0 ;

C = A±(±t)−% + B; ±t ¿ 0 : (11)

Using the approximate equation of state we obtain [10,12,14]: U0 = 1:062(4), R# =
1:35(7) for N = 2 and U0 = 1:57(4), R# = 1:33(8) for N = 3.
For N =3 the approximate equation of state can be compared with experiments. We

observe good qualitative and quantitative agreement. For N =2 we can use our results
to predict critical properties of the &-transition in 4He. In this case, the equation of state
does not have a direct physical meaning, but we can still compare the predictions for
the singular speci7c-heat ratio U0. A precise determination of the exponent % and of
U0 was done recently by means of a calorimetric experiment in microgravity [28] (see
also Ref. [4] in Ref. [10]) obtaining %=−0:01056(38) and U0 ≈ 1:0442. The result for
U0 is lower than the theoretical one. This is strictly related to the disagreement in the
value of % (see also Ref. [29]). Indeed, using hyperscaling, we 7nd % = −0:0146(8),
that signi7cantly di>ers from the experimental estimate. The origin of this discrepancy
is unclear and further theoretical and experimental investigations are needed. A new
generation of experiments in microgravity environment that is currently in preparation
should clarify the issue on the experimental side [30].
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