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1 .  - I n t r o d u c t i o n .  

A better qualitative and quantitative understanding of quantum field theories 
requires an improvement of the analytical and numerical methods of approxima- 
tion. Lattice field theories are a natural ground of application of large-scale 
numerical  techniques. More efficient algorithms and more powerful computing 
machines lead to an ever increasing amount  of numerical results. These results 
are, however, affected by two major limitations: 

1) the quality of the information grows as the logarithm (or, at best, as 
a small power) of the numerical  effort; 

2) the lack of control on the systematic errors possibly induced by some of 
the numerical  techniques is often tantalizing. 

Both limitations are intrinsic to the field-theoretical nature of the problem 
addressed: off-critical systems, and even some bulk properties of critical systems, 
can usually be studied with great numerical precision as well as with sensible 
analytical methods. Systems at criticality, and the extraction of their scaling 
properties, however, constitute a much more difficult challenge. 

In view of the above-mentioned limitations, the parallel development of more 
powerful analytical techniques, even with a limited domain of applicability, is 
certainly very welcome. On one side it allows the comparison between numerical  
and analytical results in a controlled environment, and therefore it leads to a check 
of applicability for those techniques and methods whose reliability cannot  be taken 
for granted a priori. On the other side it may improve our understanding of those 
properties that cannot be directly tested with present-day numerical  methods and 
may strengthen some of the theoretical hypotheses that must unavoidably be used 
in the field-theoretical interpretation of numerical data. One can easily understand 
the need for such theoretical pieces of evidence when one realizes that, notwith- 
standing all perturbative results and the substantial agreement existing in the 
theoretical physics community, there is at present  no independent  non-perturba- 
tive proof of existence of any asymptotically-free quantum field theory, whose 
relevance in the construction of models of the fundamental interactions cannot be 
overstressed. 

In this perspective, we think that the 1 /N  expansion [1] (expansion in the 
number  of field components)  may be a rather rewarding instrument  of analysis 
not only in the context of cont inuum field theories, where it has long been known 
as a major source of non-perturbative information, but also in the case of lattice 
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field theories, where, to the best of our knowledge, the 1/N expansion is the only 
approach leading to some theoretical evidence for the existence of a cont inuum 
limit and of a non-vanishing scaling region, where the field-theoretical properties 
of the models can in principle be explicitly tested with predictable precision. 

The conceptual foundations of the power of the 1/N expansion are essentially 
the following: 

1) N is an intrinsically adimensional parameter,  representing a dependence 
whose origin is basically group-theoretical, and leading to well-defined field 
representation for all integer values, hence it is not subject to any kind of 
renormalization. 

2) N does not depend on any physical scale of the theory, therefore we may 
expect it to play no r61e in the parametrization of criticality. As a consequence 
there is no physical reason not to expect reasonable convergence properties from 
an expansion in l/N, at least in well-defined regions of the other physical 
parameters. 

Evidence for a finite radius of convergence of the 1/N expansion has been 
produced in a number  of instances, notably in the proposed exact S-matrices for 
a number of two-dimensional bosonic and fermionic models. More generally, the 
large-order behaviour of the coefficients of the 1/N expansion can be studied by 
applying inverse-scattering techniques to the problem of finding instanton solu- 
tions of the effective actions [2-4]. In the case of O (N)-symmetric  (~2)2 theories in 
less than four dimensions, the 1/N perturbation series can be resummed by 
a Borel transformation, and in the two-dimensional non-linear ~-model one is led 
to conjecture the convergence of the series also for the Green's functions. 

Till now the major domain of application of the 1/N expansion has been in the 
evaluation of critical exponents for many different classes of models in the range 
of dimensions comprised between 2 and 4 (lower and upper critical dimensions). 
At the critical dimension the critical exponents are trivial, but the logarithmic 
deviations from scaling and the dynamical mass generation lead to the rich 
phenomenology characteristic of asymptotic freedom. This phenomenology can be 
studied, on the lattice as well as in the continuum, by applying the 1/N expansion 
in conjunction with proper modifications of the methods usually adopted in 
standard renormalizable quantum field theories, notably the techniques of regula- 
rization and renormalization of the physical parameters. Due to the nowrenorma-  
lized character  of N, the 1/N expansion leads to results whose renormalization 
group invariance properties are much more transparent  than those of standard 
perturbation theory. However, as far as we could check, the 1/N expansion 
commutes with perturbation theory, and therefore it provides a direct reinterpreta- 
tion and an unambiguous resummation of the perturbative results. Such phenome- 
na as the effects of a change of regularization scheme, the r61e of dimensional 
transmutation in the parametrization of renormalization group invariance, the 
relationship between dynamical mass generation and Borel ambiguity in resumma- 
tions, the interplay between dimensional regularization, minimal subtraction, and 
a-expansion, the mixing effects and the subtraction of perturbative tails in the 
evaluation of quantum expectation values of composite operators, all find a speci- 
fic and transparent  illustration in the context of the 1/N expansion already at the 
lowest non-trivial order of computations [5, 6]. 
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The main purpose of the present review is to describe the results that may be 
obtained by applying the 1 /N  expansion to the lattice versions of two-dimensional 
spin models. Therefore, we shall only briefly sketch the main results presented in 
the (wide) literature on all the above-mentioned topics, focusing only on those 
continuum results that are essential in order to introduce their lattice counter- 
parts. 

The subject of lattice 1 /N  expansion has not till now received a systematic 
treatment: as a consequence many sections of the present paper (especially sect. 
5 and sects. 7-14) are essentially original work by the authors. 

In order to present a few peculiar techniques and results of the application of 
the 1 / N  expansion to renormalizable lattice field theories, we found it proper to 
focus on a specific class of models. These models should be simple enough to 
make all calculations as short and understandable as possible, as well as to make 
accurate numerical simulations feasible now or in the near future. However, it was 
necessary for the completeness of the presentation to deal with a sufficiently rich 
phenomenology, notably non-trivial mass spectra, gauge and topological properties, 
besides the obvious request of perturbative asymptotic freedom. After much think- 
ing, we decided to study a two-parameter model of two-dimensional spin fields 
with U(N)  global symmetry[7]. This model interpolates between the standard 
O(2N) [8-10] and CP N-1 models [11, 12], and for special values of the parameters 
it represents the gauge-fixed bosonized version of the minimal coupling of mass- 
less fermions to CP N-1 fields [13]. 

The present paper is organized as follows: 
In sect. 2 we briefly discuss the general results that have been obtained in the 

study of d-dimensional spin models, with special emphasis on the topics related to 
perturbative and non-perturbative renormalizability. 

In sect. 3 we introduce a class of 1/N-expandable two-dimensional spin 
models, and discuss the qualitative picture of their properties that one may draw 
from a large-N analysis. 

In sect. 4 we review a number of exact results, especially factorized S-matrices, 
that apply to the models under consideration for peculiar values of the parameters. 

In sect. 5 we discuss the 1 / N  expansion in the continuum version of the 
models, introducing our regularization and renormalization procedure, defining 
observables, and extracting some quantitative O ( 1 / N )  physical predictions. 

Section 6 is dedicated to the presentation of a number of alternative lattice 
formulations and motivates our choice of a lattice action, which will turn out to 
depend explicitly on an Abelian vector field and on an extra parameter eventually 
allowing for a Symanzik tree-level improvement of the action. 

In sect. 7 the basic ingredients of the 1 /N  expansion on the lattice, effective 
action, propagators, and vertices, are introduced. 

Section 8 is devoted to a specific technical problem, the search for integral 
representations of the effective lattice propagators that, in the case of nearest- 
neighbour interactions, allow a substantial simplification of the numerical tasks in 
the evaluation of the effective Feynman diagrams. 

In sect. 9 we introduce the basic ingredient of all lattice computations in the 
scaling (field-theoretical) regime, the asymptotic expansion of the lattice propaga- 
tors for small values of the (dynamically generated) mass gap, i.e. for values of the 
correlation length much bigger than the lattice spacing (we are always working in 
the infinite-volume limit). 
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In sect. 10 special techniques for the asymptotic expansion in the case of 
nearest-neighbour interactions discussed in sect. 8 are presented. 

Section 11 is dedicated to applying the above-mentioned results to the actual 
O ( 1 / N )  evaluation of physical quantities in the scaling region of our class of 
models. We discuss the possible definitions of correlation length, show the 
universality of the lattice results, and give a full analysis of the simplest correlation 
function, the two-point correlator of the fundamental fields, including the evalua- 
tion of the lattice wave-function renormalization factor. 

In sect. 12 the above-mentioned lattice contributions to physical quantities are 
explicitly evaluated in the case of nearest-neighbour interactions. 

Section 13 is devoted to the issue of topological operators on the lattice; 
different definitions are analysed and compared in the context of the 1/N 
expansion of C P  N-1 models. 

In sect. 14 we rephrase our results in the language of standard perturbation 
theory and perturbative renormalization group. We discuss the evaluation of the 
ratio of A parameters in the context of the 1/N expansion and extract an explicit 
representation of the O ( 1 / N )  contributions to the lattice renormalization group 
fl-function, clarifying some subtleties concerning the non-commutativity of some 
limits at the border of the space of parameters,  which however does not affect the 
physical predictivity of the model. 

In sect. 15 we review some results concerning the possibility of performing 
a finite-size scaling analysis of spin models by the help of i /N-expans ion  techni- 
ques. 

In sect. 16 we analyse the attempts at extracting physical predictions for 
models at low N by computing higher orders of the 1/N expansion on finite 
lattices. 

In the same perspective, we discuss in sect. 17 an alternative approach to 
1/N-expandable spin models based on truncated Schwinger-Dyson equations. 

Section 18 is devoted to a review of the results that can be obtained by applying 
the methods discussed here to a wide class of 1/N-expandable fermionic lattice 
models. 

Finally in sect. 19 we briefly discuss the relevance of our results and draw our 
conclusions. 

2. - Spin m o d e l s  in d d i m e n s i o n s  and renormal izabi l i ty .  

The renormalization group properties of two-dimensional spin models, notably 
asymptotic freedom, are the foundations of our belief in the existence of 
non-trivial renormalized quantum field theories describing the critical behaviour 
of these models in the coupling domain lying in the neighbourhood of the (trivial) 
critical coupling gc = 0 (tic = oo). In the case of 1/N-expandable spin models, the 
corresponding field theories are non-linear 6-models defined on symmetric spa- 
ces. These in turn may also be thought of as special limits of linear c-models 
(sometimes coupled to gauge fields) enjoying the proper group symmetries. 

In order to understand properly the renormalization group properties of these 
models, it is certainly convenient to extend the analysis by treating the physical 
dimension d as a continuous parameter  in the range 2 < d __G 4. It is now possible 
to compare the a = d -- 2 expansion of the non-linear models with the a' = 4 -- d 



6 M. CAMPOSTRINI and P. ROSSI 

expansion of the linear models. These latter theories are known to be superrenor- 
malizable, with an ultraviolet-stable fixed point at the origin and an infrared-stable 
fixed point at ,,strong), coupling when ~' > 0. Since the infrared limit of linear 
models has the same relevant operator content as the ultraviolet limit of the 
non-linear models, the latter must also be renormalizable when e < 2 around their 
non-trivial ultraviolet fixed point [14, 15]. As a consequence, the critical exponents 
should take the same value when computed in the linear and non-linear models at 
the same dimensionality, and in particular the critical exponents of the non-linear 
a-models should become trivial at d = 4. As we shall see, this phenomenon is 
beautifully illustrated in the 1 / N  expansion. 

In the two-dimensional limit ~---*0, however, general theorems [16, 17] insure 
the impossibility of spontaneous breaking of continuous symmetries. Therefore 
there is no weak-coupling, broken-symmetry phase, and gc ---- 0 is an ultraviolet 
fixed point, around which logarithmic deviations from scaling are allowed 
(asymptotic freedom). Since no massless modes can be present, non-perturbative 
mass generation must occur. 

This by now standard scenario has been the starting point for most perturbative 
studies of non-linear a-models. After Polyakov's pioneering paper [18], perturbative 
ultraviolet renormalizability was discussed by Brezin, Zinn-Justin, and Le Guillou 
[14, 19, 20] and by Bardeen, Lee, and Shrock[21] for O ( N )  models, and by 
Valent[22] for CP N-~ models. The extension to more general symmetric spaces 
was suggested by Eichenherr and Forger [23, 24] and discussed by Pisarski [25], by 
Duane [26], and by Brezin and coworkers [27]. Quite naturally, one adopts dimen- 
sional regularization and evaluates the renormalization group fl- and y-functions in 
the minimal subtraction (MS) scheme. However, a rigorous treatment of these 
models shows that generic Green's functions are plagued in two dimensions by 
severe infrared divergences. This problem was first tackled by Jevicki [28] and by 
Elitzur [29], who showed that two-dimensional Green's functions that are fully 
invariant under the symmetry group of the model could be computed (in low 
orders of perturbation theory) and found to be infrared-finite. This property was 
exploited in refs. [30-32] in the context of dimensional regularization, and was 
given a rigorous proof to all orders of perturbation theory by David [33-35]. 
Three-loop calculations for the renormalization group functions were first presen- 
ted by Hikami and Brezin [36] for O ( N )  models, and by Hikami [37] for CP N-~ 
models. Extensions to more general symmetric spaces was given in refs. [38, 39]. 
Anomalous dimensions were computed by Wegner and collaborators to three-loop 
order [40], and later to four-loop order [41, 42]. The four-loop order ]?-function 
computation was completed in refs. [43, 44]. It would be beyond the purposes of 
the present  review to give any detail of the above-mentioned computations. 
A collection of results is presented in Appendix A fo r  easy reference. 

In the context of the perturbative approach, another thoroughly investigated 
issue is the classical thermodynamics of the models at non-zero external magnetic 
field, which ensures the absence of the infrared divergences discussed above. 
Renormalization and scaling behaviour were discussed in ref. [14] and recon- 
sidered by Jolicoeur and Niel [45, 46], who exploited the scaling properties to 
devise an extrapolation method allowing for non-perturbative predictions in the 
limit of vanishing magnetic field. 

When we turn to the approach based on the 1 / N  expansion, willing to 
investigate the renormalizability properties of the models for 2 _< d ~_ 4, we must  
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dramatically change our focus from a situation where the parameter ~ can be 
considered infinitesimal and employed as an ultraviolet regulator to the case 
where the physical dimensionality is a fixed finite parameter. Nothing prevents us 
in principle from using some of the dimensional regularization techniques, and 
this is one of the basic ingredients in the study of d-dimensional models around 
criticality and in the evaluation of critical exponents in the 1 / N  expansion. An 
impressive series of results were obtained by Abe [47-49], Brezin and Wallace [50], 
and Ma [51, 52], and more recently with improved techniques by Vasilev and 
coworkers [53-56]. In O (N) models, the critical exponent ~/ is by now known to 
O(1/N3), while the critical exponent v is known to O ( 1 / N 2 ) ;  O ( 1 / N )  results are 
available for CP N- ~ models. Following the procedure indicated in ref. [36], these 
results are also the starting point for an evaluation of the renormalization group ~- 
and y-functions (in dimensional regularization and minimal subtraction) at the 
same orders of the 1 / N  expansion. All the results for critical exponents confirm 
the above-mentioned observations about universality between non-linear and li- 
near models and triviality in d = 4. 

We want to stress that, as far as the present evidence goes, the ~ and 1 / N  
expansions appear to be strictly commuting when applied to the evaluation of 
physical quantities, such as the critical exponents. 

The problem of renormalizability in the framework of the 1 / N  expansion was 
studied by Symanzik [57, 58] and by Arefeva and collaborators. In refs. [59-63] the 
ultraviolet renormalizability of the three-dimensional O (N) models in both the 
symmetric and the broken-symmetry phase was shown to all orders of 1 / N  by 
applying dimensional regularization. The ultraviolet renormalizability of CP N-1 
models when d = 2, 3 was shown in ref. [64] by similar methods. However, in 
order to prove the existence of a renormalized critical theory free of infrared 
divergences, it was originally necessary to give up dimensional regularization and 
attack the problem from the point of view of BPHZL renormalization, which was 
done for three-dimensional O (N) models in ref. [65]. Subsequently the results was 
generalized to all 2 < d < 4 by the introduction of analytic regularization [66]. 

A different view of renormalizability for asymptotically-free 1/N-expandable 
field theories has been put forward by Rim and Weisberger [67 t. The essential, if 
subtle, equivalence of this point of view with more standard dimensional regulari- 
zation approaches has, however, been exposed in ref. [5]. 

A very important issue in the context of the I / N  expansion of CP N-1 models is 
the relevance of classical instanton configurations, that appear to be non- 
perturbative in the expansion parameter 1 /N ,  and therefore might in principle 
invalidate conclusions obtained in a purely perturbative context. The problem was, 
however, solved by Jevicki [68], who showed that, at the quantum effective-action 
level, instantons, instead of being stationary points, appear in the form of poles. 
One may then demonstrate that the 1 / N  expansion and the semiclassical method 
correspond to two alternative contour integrations of the functional integral. 
Further insight on the r6s, it was originally necessaryby David[69], who 
discussed also the problem of summability of the instanton contributions, 
computed in refs. [70, 71]. The quantum statistics of CP jr-1 models was studied by 
Affleck [72, 73] also in connection with the topological properties (0-dependence) 
of the models, and later analysed and reviewed by Actor [74]. An extension to 
CP N-~ models coupled to fermions was discussed in ref. [75]. For the sake of 
completeness, we also mention that a different non-perturbative approach to 
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cpN-1 models, based on the rSle of ,,torons,, (classical solutions with fractional 
topological charge) has been put forward in recent years by Zhitnitsky [76] and 
found to agree with large-N predictions. 

A more general nomperturbative issue that may be addressed in the context of 
the 1 / N  expansion is the existence and the rSle of infrared renormalons [77], 
appearing as singularities on the positive real axis of the Borel transform in 
massless ultraviolet-free theories, and related to the appearance of non- 
perturbative expectation values. These in turn are the basic ingredients in the 
operator product expansion approach advocated by Shifman, Vainshtein and 
Zakharov in order to describe large-distance effects in asymptotically free theo- 
ries [78]. 

David showed that, in the context of the 1 / N  expansion of O ( N )  models, 
non-perturbative terms can be organized in an operator expansion, but they have 
infrared renormalons [79]; these renormalons cancel against the corresponding 
renormalons appearing in the coefficients of the operator product expansion when 
Green's functions (involving only zero-dimension operators) are computed. Accord- 
ing to the same author [80, 81], only in well-definite instances (e.g., the topological 
charge density, and other quantities with a direct physical meaning) non-perturba- 
tive expectation values can be defined unambiguously. In any case, it is possible to 
show that, in each order in l /N,  the O (N) two-dimensional S-matrix amplitudes 
can be written as series in powers of the dynamically generated mass times 
a convergent perturbative series [82]. For the partially different point of view 
supported by the ITEP group, one should see refs. [83, 84], where the issue of the 
operator product expansion in the context of the 1 / N  expansion of O (N) models 
is also discussed. 

The subject of the operator product expansion and renormalizability for 
critical O (N) models in dimension 2 < d < 4 (where non-trivial criticality exists) 
has been thoroughly investigated in recent years by Lang and Ruhl [85-90]. 

Finally we should mention that the possibility of including nomperturbative 
effects directly into the perturbative expansion has been explored by Davis and 
Nahm, who discussed both O ( N )  models [91] and CP N-~ models [92], showing 
that proper normal-ordering may lead automatically to the inclusion of a non- 
perturbative mass gap in the perturbative series (and confinement in CP N-~ 
models), and the result of this procedure commutes with the 1 / N  expansion [93]. 
In a related development [94] the vacuum structure of the O (N) model is studied 
by a variational technique and agreement with conventional large-N results is 
found. 

3. - i /N-expandable  two-dimensional spin models. 

In order to achieve some generality, we shall investigate the properties of 
a two-parameter class of 1/N-expandable spin models, described by the conti- 
nuum action 

(3.1) S =  N S d2x{flvSu-28~,z + flgDl, zD~,z } , 

where z is an N-component complex field subject to the constraint 

(3.2a) -2 z = 1 
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and a covariant derivative Dv = ~v + i A ,  has been defined in terms of the 
composite gauge fields 

1 
( 3 . 2 b )  - C z} = z -  

This action was in t roduced first by Samuel [7] and it is an interpolating action 
between pure CP N- 1 models (fl,, = 0) and U(N)  vector models (fig = 0), which in 
turn  are nothing but  O(2N)  vector models. 

We notice that  pure CP N-~ models enjoy a U(1) gauge invariance related to 
the local t ransformations 

(3.3a) z (x) ~ exp [i2 (x)] z (x ) ,  

(3.3b) (x) --+ exp [-- i2 (x)] 5 (x) ,  

(3.3c) A~ (x)----+ A~, (x) - -  (~ ~,~ (x) . 

This invariance will play an important  r61e in determining the s tructure of the 
effective vertices. 

We can int roduce the (rescaled) weak-coupling parameter  f by the following 
change of variables: 

1 
(3.4a) - - =  fi,, + fly, 

2f 

(3.4b) ~ f =  fi'- 

The coupling constant  x, as defined by eqs. (3.4), enjoys the property of non- 
renormalization,  i.e. the renormalizat ion group trajectories in the (fig, fl~,)-plane 
(in the con t inuum version of the model) are just  the curves of constant  ~ and 
correspond to physically different theories. This property will emerge rather  
clearly from the discussion of the 1 / N  expansion.  The renormalizat ion group 
trajectories are plotted in fig. 1 for several values of x. 

0.5 

/L 

~=3/z 

•  

x =  1 / i r  

f 

x=O 

0.0 fig 10 

Fig. 1 . -  Renormalization group trajectories in the {fig, fl,,} plane. 
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The 1 / N  expansion is achieved as usual by implementing the constraints (3.2) 
! by Lagrange-multiplier fields e and 0,. The manipulations are quite standard and 

we obtain 

~f(-2~.z)  ~ + i~ (-zz-- 1) + uf(O'. = 

N C  2 f ~ f  _ _ 1 
= - - / d  x { - -  Ot,5 0 # z + - -  I (O~, +iO't,)zl2 + ic~(Sz- -1) j .  

2fJ [1 + x f  1 + ~ f  

We can now perform the Gaussian integration over the z-fields and obtain the 
effective action 

{ }N ~ f  1 D v D . ) + / a  + ia) (3.6) soff = N T r l n  ~ f ( - -  a .O. )  + 1 + ~-----f(-- ~ ( - -  ' 

/ 

where now D.  = ~. + iO'.. Finally, rescaling the multiplier field 0.  to 
! 0. = 0 . / (1  + x f )  and introducing the vacuum expectation value of the a-field, 

c~ (x) = < a > + aq (x), < ~ ) = -- imp, we obtain the following form of the effective 
action: 

(3.7) S e f r = N T r l n { - - O . O . - - i { O . ,  O ~ } + m ~ + i a q } +  

N 
+~-f{ m~-- io~q+(1 + ~ f )  O.O.}.  

In the large-N limit, the value of mo 2 is determined, as a function of f only, by the 
saddle-point condition (gap equation) 

1 /" d2p 1 
(3.8) 2 f - -  J (2rc)~ p2 + m~' 

Equation (3.8) is in need of ultraviolet regularization; we shall come to this point 
in sect. 5. 

By taking the second functional derivative of the effective action around the 
saddle point, we may now obtain the propagators of the quantum fluctuations 
associated with the fields ccq and 0.; both are O ( 1 / N )  quantities that can be 
expressed by the functions 

d2q 1 1 1 ~ + 1 
(3.9a) A(~) ~ (P)  = j (~52 q2 + m~ (p  + q)e + mo2 - 2rtp2~ in { - - ~ ,  

( 3 . 9 b )  A(0)., (p) = x + .~ (2=) ~ [q~ + m~] [(p + q)~ + m0 ~] - -  

1 { + 1 2 5.~ 
= ~ r  ~ l n  _ 1 p2 ] ,  

where ~ = x/1 + 4m~/P 2. The effective propagators in d dimensions are presen- 
ted for reference in Appendix B. 
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It is now crucial to observe that  all the high-order effective vertices result ing 
from eq. (3.7) by taking higher functional  derivatives are completely unaffected by 
the value of 4. As a consequence,  the vertices share the gauge properties enjoyed 
by the CP N- ~ model, and in part icular  transversality. This fact in tu rn  implies the 
possibility of replacing the propagator (3.9b), i.e., 

(3. lOa) Aco)~(p) = A(o)(p) ~ P u ~ . / +  ~ Pe 

where 

1 ( ~ + 1  2+2TC~)  
( 3 . 1 o b )  = _ 1 ' 

with its transverse part, when  comput ing expectat ions of gauge-invariant opera- 
tors. Equation (3.10) shows that  ~ is a ,physical,, parameter ,  related to the ratio of 
the mass of the Lagrangian field z (m0 in the large-N limit) to the mass m o of the 
propagating field 0,.  The exact  relationship between the two masses is expressed 
in the large-N limit by the equat ion 

(3.11) 4 ~  /4m2o 1 - - ~ - -  1 arcctg ~ -  1 = 1 - - ~ ,  0 < ~ < - .  

This is the basic physical reason why ~ is not  subject to renormalization,  m o (4) is 
plotted in fig. 2. 

2.00 

1 .50  

1.00 

0.50 

j J r  

0.00 0.1 0.2  x 0 .3  

Fig. 2. - The large-N mass ratio mo/mo, plotted as a function of ~. 

Let us now briefly describe the classes of different physical theories parametri-  
zed by x. 

1) When x = 0, we get m 0 = 0: 0" becomes a dynamical  gauge field giving 
rise to a [inear confining potential between z and 5, and the physical states are 
the bound states that  are singlets under  gauge transformations.  This is the 
well-known physical picture of the CP N-~ models [95-97]. 
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2) For very small values of x the above picture is substantially unchanged: 
in the absence of a gauge symmetry the z-fields are not automatically confined by 
Elitzur's theorem; however, their mass is so much higher than that of their bound 
states to make them effectively disappear from the physical spectrum. 

3) With growing ~ an inversion occurs and the z-fields become the funda- 
mental  states of the model, while the mass of the bound states becomes bigger and 
bigger, when measured in units of m0. 

4) At ~ = 1/7r we meet a threshold: m 0 = 2m0 and the Yukawa potential 
that was the remnant  of the linear confining potential completely disappears. This 
is a quite interesting model: it is easy to get convinced that the corresponding 
action is nothing but the effective action resulting from the functional integration 
over a set of N-component massless fermion fields minimally coupled to the 
,gauge,, field A, (cf,, e.g., refs. [13, 98]). This model has no quantum anomaly, and 
its factorized S-matrix is therefore known: the physical states are in the fundamen- 
tal representat ion of U(N) and the bound states have disappeared, as expected. 

5) When ~ > 1/zr, there are no bound states, and the models interpolate 
smoothly from U(N) to O(2N) symmetry. In particular, for integer values of 
n = ~:~ the models describe the minimal gauge-invariant coupling of n ,flavours,, of 
massless fermions [99]. This picture gives further support to the notion that ;~ is 
a physical parameter  not subject to renormalization. 

6) Finally, when ~-- .  oo the effective field 0 ,  completely decouples and we 
are left, as expected, with the well-known O(2N) non-linear sigma-model, 
possessing a factorized S-matrix for the fundamental 2N real fields and showing 
absence of bound states. 

4. - R e v i e w  o f  e x a c t  r e s u l t s .  

In sect. 3 we mentioned that, for special values of the parameter  ~, a number  
of exact results are available, especially concerning exact factorized S-matrices 
and bound-state spectra. We must, however, keep in mind that these results have 
been obtained in a rather  indirect way, by applying such methods as analytic 
S-matrix theory or Bethe Ansatz. As a consequence,  the 1/N expansion offers the 
possibility of verifying the applicability of the above-mentioned methods to the 
models at hand and therefore the correctness of the physical interpretation. For 
future reference and comparison, we would like to present  here a short review of 
these exact results. 

We start from the observation that the key ingredient for the possibility of 
constructing an exact S-matrix is the assumption of factorization of multiparticle 
amplitudes into two-particle amplitudes, i.e. the absence of particle produc- 
tion [100]. This property is in turn related to the existence of higher-order 
conservation laws. Consider the standard Noether current  j~ associated with the 
global symmetry, and notice that the non-local charge [101] 

(4.1) 
1 /"  

Qr ~/dx~ dx2E(x~- x~)[jo(t, xl)jo(t, x2)] + | dx j l  (t, x ) ,  
2.1 J 
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where  e (x)  is the sign funct ion,  is classically conserved owing to the equat ions  of 
motion.  At the quan tum level one may show that  this conservat ion law is in 
general  spoiled by anomal ies  genera ted  by the renormal iza t ion  process.  These  
anomalies  are non-per turbat ive,  but  thei r  coefficients can  be calcula ted in per tur -  
bat ion theory.  A detailed analysis shows that  in O (2 N )  models  the anomaly  is 
actually absent[102] ,  while in the pure  CP N-~ case one finds [103, 104] 

dQ ~nl~ N f (4.2) -- s u ' 8 u O , ( t ,  x )  d x .  
d t  rc 

However, when  we cons ider  the inclusion of minimal ly-coupled  massless fermions,  
we realize that  the non-local  charge is classically conserved only if we include 
a cont r ibut ion  from the fermionic  axial vector  cur rent .  The  axial cu r r en t  in tu rn  is 
known to possess a quan tum anomaly,  opposite in sign to the r.h.s, of eq. (4.2).  As 
a consequence ,  the modified non-local  charge has no net  q u a n t u m  anomaly  and 
the cor responding  model  turns  out  to possess a factorized S-matr ix  [104, 1051. In 
our  language, these results imply the possibility of f inding explici t  S-matrices in 
the cases x = c~ and • = 1/~,  respectively. 

Without belaboring on the t echn iques  used in order  to solve the factorization 
equations,  we only recall  that the Pock space is decomposed  i r reducibly  into 
subspaces labelled by a definite part icle n u m b e r  n. States are identif ied by sets of 
part icle  m o m e n t a  {P,.}, and factorization is expressed  by 

where  S(P',., P.O is the two-particle S-matrix.  S is best  expressed  in te rms of 
rapidity variables O~ = arctgh (P,-,1/P,-,o). Imposing 0 ( 2 N )  symmet ry  [106] one 
may assume 

(4.4) (0; ,  g; 0~, 3(out) lO,, k; Oe, / ( i n ) )  = 

= 6 (0,  -- 0;)•  (0~ - 0")[6va~:~& (0)  + a~aj ,  S~(0)  + a,,a.j~ s:, (0)] + 

+ fi (0~ - 0") fi (0~ - 0;) [6,.j,5 ~, s ,  ( -  O) + ,5~,,5j~ & ( -  O) + 6,~ fi.j, & ( -  0 ) ] ,  

where  0 : 0 ~ -  0 z. Solving the const ra in ts  one  finds 

iK 
(4 .5a)  Sa (0)  = $2 ( 0 ) ,  

( N  - 1) 0 

i7~ 

(4.5b) S, (0 )  = - ( N - -  1) (iTc -- 0) S~ ( 0 ) ,  

and, assuming minimal i ty  in the n u m b e r  of poles and zeros in the physical sheet,  

(4.6) $2 (0)  = R (0)  R (ig - 0 ) ,  
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where 

(4.7) R (0) = 
2 (N--- 1) 2re/ \ 2  -- 

2 ( N - -  1) 

The result shows no bound-state poles [107], and was checked in a 1 / N  expansion 
up to second order [108]. 

cpN-1  models with minimally-coupled fermions in turn correspond to S U ( N )  
symmetry, and the form of the factorized S-matrix is [98, 109, 110] 

(4.8a) (0'1, i; 0~, j (out)[0~,  k; 02, / ( i n ) }  = 

= ~  (0"  1 - -  01)  ~ (0~ - -  02)  [(~ik(~jlUl (0) "JC ~jk~ilU2 ( 0 ) ]  - -  

- -  6 (Otl - -  0 2 ) 6  (02  - -  0 1 ) [ ~ j k 6 i l U l  (0) -~ {~ik~jlU2 ( 0 ) ] ,  

--t (4.8b) (0'~, i; 02, j (out ) [01,  k; 02, / ( i n ) ) =  

= 6 (0'~ -- 0 , ) 6  (0'2 -- 02) [Sik6yl tl (0)  + 6k~ 6~jt2 (0)] + 

+ 6 (O'l -- 02)5 (0'2 -- 01) [(~kS~lrl (0)  + 6k~e~r2 (0)] ,  

where the bar indicates antiparticles. The constraints imply 

2ir~ 
(4.9a) u2 (0) = -- - -  ul (0) ,  

NO 

(4.9b) rl (0) = r2(0)  = 0, 

(4.9c) t2 (0) = 
2ire 

N ( i ~  -- O) tl (0 ) .  

Moreover, the crossing symmetry requires 

(4.9d) t ~ ( 0 )  = u 1 ( i ~  - -  0 ) ,  

(4.9e) t2 ( 0 )  = u2 ( i ~  - 0 ) .  

Finally, from minimality one obtains 

(4.10) t l (0 )  = 

1 
r r 

1 iO 1 iO 
F + F + N  

There are no bound-state poles: the bosons interact repulsively and the fermions 
are screened by a ,,secret,, long-range force, while the gauge field loses the zero 
mass pole. This result was again checked in the 1 / N  expansion. 
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We must  not ice that  these  integrable models  can somet imes  be solved by the 
Bethe Ansatz and quan tum inverse-scat ter ing methods,  always reproduc ing  the 
above-ment ioned results. 

For  comple teness  we men t ion  that  the factorized S-matr ix  approach  allows in 
some special cases the de te rmina t ion  of exact  form factors. In part icular ,  in 
O ( 2 N )  models  it is possible to evaluate the mat r ix  e lements  of the Noether  
cu r r e n t  be tween the two-part icle state and the vacuum. The  resul t  was checked  in 
the 1 / N  expans ion  to O ( 1 / N )  by the use of the (explici t ly known)  spectral  
represen ta t ion  of the propagator  A(=)(p2)[111].  One can write 

_ _  ] )2 
. . . .  s inh ~ s inh 2 1 ~ _ o- 

(4.11) A(~) (p ' )  = 4r tm;  ~k ' 2 4 m ;  

There fo re  

(4.12) 
f i 1 pe p(=) (/,2) 

4m 0 d 
., s inh q5 1 p2 

p{=) ( p ' )  = 2= ~b 2 + =e, cosh 2 ~ q5 4mo 

Likewise, when  ~ = 1/rt, we have 

(4.13) 

dco~ (pe )  = 2rt - -  

P~o~ (1 ~ )  = 2 u  - -  

- J d P  2 p C + p 2 ,  

4 m 0 

ctgh } r 

A last very impor tan t  exact  resul t  that  can be obtained from the analysis of the 
S-matr ices  for integrable models  is the analytic de te rmina t ion  of the so-called 
mass -A-pa rame te r  ratio, where  the A-paramete r  is def ined in s tandard per turba-  
t ion theory  (MS scheme)  in te rms of the subtract ion scale p and the universal  
coefficients b0 and bl of the renormal iza t ion  group fl-function: 

(4.14) J f l ( g ' ) J  p(bog)_~, l /bgex p 1 

The seminal  resul t  was obta ined by Hasenfratz  and col laborators  in the case of 
O ( 2 N )  models [112, 113]: 

1 ( ' ( N  1)) 1 
(4.15) m = 

V 1 + 2 (N:7_ 1) 
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The analysis can be repeated in the u = 1/Tz model; the final result is 

(4.16) m = 

As we shall see in the next  section, these results can also be explicitly verified in 
the context  of the 1/N expansion. 

5. - The  1/N expans ion  in the  cont inuum: regularization and renormal izat ion.  

The Feynman rules for the 1/N expansion of the model can be easily derived 
by introducing external currents coupled to the z-fields before perfoming the 
functional integration. They are summarized in fig. 3. The 1/N expansion is an 
expansion in the loops of the effective fields aq and 0~. In the graphical represen- 
tation, a closed loop of the z-fields stands for an effective vertex of the expansion; 
effective vertices can be obtained by taking functional derivatives of the effective 
action and carry a factor of N. 

2 2 
p + mo i 

. . . . . . . . . . .  I A(~N (p) ! 
-(pu+ p'~) 

1 A (p) 

Fig. 3. - Feynman rules for the 1/N expansion in the continuum. 

The effective vertices actually amount to one-loop integrals over the fundamen- 
tal field propagators. In two dimensions, all the effective vertices may be in 
principle computed analytically, but the computation may become very cumber- 
some in the case of exceptional configurations of momenta,  which are often those 
relevant to the actual computations one would like to perform. For a discussion of 
this technical problem, cf. ref. [114]. 

While no regularization is needed in the evaluation of the effective vertices, it 
becomes unavoidable when one wants to compute the Green's functions of the 
physical fields. In our choice of regularization we were not guided by the usual 
requirements of Poincar6 invariance, gauge invariance, and consistency up to all 
perturbative orders that made dimensional regularization a favourite tool of quan- 
tum field theory. Having in mind our final purpose of performing explicit lattice 
computations, we rather focused on the requests of computational ease and 
t ransparency in the regularization mechanism, which is often obscured in dimen- 
sional regularization by the interplay of ultraviolet and infrared singularities. 

Relaxing the consistency request down to one-loop consistency, we found that 
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the simplest and most transparent scheme was a kind of sharp-momentum (SM) 
cut-off. The regularization procedure (roughly formulated for O(N)  models in 
ref. [115] and discussed more precisely in ref. [5]) starts from the observation that, 
since the A propagators are finite, the O ( 1 / N )  (one-loop) Feynman integrals 
appearing in the computation of the n-point Green's functions are integrals of 
regular functions. They can therefore be regularized by subtracting explicitly the 
highest powers of the integration variable appearing in the Taylor expansion of the 
integrand. The lower limit for the integration of the subtraction terms is arbitrary, 
and we are therefore introducing a dependence on the cut-off value M 2. When the 
integrals are finite, this dependence disappears when taking the limit M2--~ oo. 

Let us, however, consider the regularized gap equation 

1 f d~p 1 fdp 1 1 M ~ 
- -  - -  in o. 

(5.1) f (  (2TO) 2 it) 2 + mo 4re p2 4~ m8 
M 2 

Equation (5.1) allow us to eliminate the dependence on M ~ of any superficially 
divergent diagram in favour of an explicit dependence on the coupling constant, 
which in turn will be readsorbed in the renormalization-group-invariant definition 
of the physical mass and in the wave-function renormalization. 

A first obvious analogy with the lattice formulation lies in the fact that we are 
working with a ,,bare,, coupling constant which can be varied together with the 
cut-off while keeping all physical quantities constant. As we shall show in sect. 9, 
the analogy can be made much more stringent by finding the relationship between 
the SM cut-off and the lattice cut-off, which will also lead to a natural regulariza- 
tion of the infrared singularities appearing in massless lattice integrals. 

It is important to observe that our regularization procedure differs by O (1 /M 2) 
terras from a naive sharp-momentum cut-off (i.e. simply setting the upper integra- 
tion limit to M~). This difference is irrelevant in the continuum, but it will become 
crucial when discussing the relationship with the lattice scheme. 

The connection between SM regularization and dimensional regularization 
(and renormalization) has been explored in some detail in the asymptotic regime 
of large Euclidean momenta, where perturbation theory holds [5]. We shall not 
belabor on this point in the present paper. 

51. The free energy. - SM regularization leads to a simple parametrization of 
the perturbative tails that contribute to the non-scaling part of physical quantities. 
We can therefore evaluate the scaling contributions to the free energy to O ( l / N )  
in our models, thus also offering a first explicit example of our computational 
techniques. The free energy is the sum of the connected vacuum diagrams of the 
effective theory. In lowest orders only the trivial Gaussian integrations over the z, 

and 0,  fields do contribute. Subtracting the perturbative tail and keeping only 
the scaling part, according to the rules of SM regularization, leads to the following 
expression for the first two non-trivial contributions: 

1 (1) p2 + 'rn8 N ~ 1 ~ (~) (P~) + - Tr In - -  + O _ _  (o) ( P )  
(5.2) F = N T r l n  p~ ~ f m ~  2 A(o~(p) ' 
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where 

2z~p 2 
, -- A (~) ( p ) ,  (5.3a) A (~) (p)  p-~ ~ In (pZ/m~)  (o) 

2 ~  
) -= A (0) ( p )  

(5.3b) A (0) (P) p_. co in (p2/m~)  - 2 + 2TC~ (o) �9 

According to our rules, the regularized expression of the free energy is therefore 
o o  

2 i f d(2~)2[ ~+1  p2]  1 [ d p 2 2 m ~  1 (5.4) F = N m~ + _ In In - -  -- In In - -  
4re 2 ~--1 ~ o  2 - - ~ j  ~ p2 ln (p2 /m~)  + 

M 2 

1 2 ~ + 1  2rc~e-2 - i n  l n - - + 2 z c x - - 2  - + 
2 d (2~)" L Ink  In ~ - 1 ~- mg 

o o  

1 

- 2  4ze p2 l n ( p 2 / m ~ ) + 2 z c x - - 2  + 0  = 
M 2 

= N m ; +  l n l n - -  (3--2rc,x)ln l n m ~ + 2 r c ~ - - 2  +CF(~) + 0  
47C 

where cF(~) is a numerical constant which can be computed to all desired 
numerical  accuracy; it is plotted in fig. 4. Notable special cases are 

(5.5a) cp(0) ~ 1.18887122, 

(5.5b) c r ( 1 )  = 2,E. 

The issue of the evaluation of dimensionless SM-regulated one-loop continuum 
integrals is discussed in Appendix C. 

6 i 
, , , . . , 

~, . y  7 
,,? 7' 

. f f  / '  

..? / 
', 9 /" 

, .v'), / 

k / : /  / , . . / "  / 
' ,  ...../) / / 

_ . - /"  

0 0.2 0.4 0.6 0.8 x 1.0 

Fig. 4. - The O (1) (subleading) finite scaling part of the free energy cr, computed from 
eq. (5.4) (solid line) and from eq. (5.6) (dot-dashed line); the O(1/N)  (subleading) finite 
part of the mass gap Cm, computed from eq. (5.24) (dashed line) and from eq. (5.26) 
(dotted line). 



THE 1/N EXPANSION OF TWO DIMENSIONAL SPIN MODELS 19 

CF(~) may also be evaluated in the context of a 1/~ expansion of eq. (5.4). 
The result is 

(5.6) cF(~) = (2=~ -- 3) in 2=x + ? z + l n 4 - - 3 + - - -  

The large-~ limit of eq. (5.4) is [116] 

(5.7) F ~ N m ; +  l n l n ~ + T e  in 
4= m0 

Substituting eq. (5.1) in (5.4), we obtain 

5 1  
+ 

4m0Z 1 . 

(5.8) F = N m ~ +  l n - - + ( 3 - 2 = u ) l n  + 2 = ~ - - 2  + c r ( u )  + O  . 
4= f 

Now, exploiting the renormalization group invariance of the scaling part of the 
free energy, we are ready to obtain the renormalization group fl-function: 

- - 2 ( O l n F ~  - ~ = - -  l f e  I + 1  f ( l +  3_--2=u_ ~ + O ( 1 ) 1  
(5.9) f l ( f ) - -  \ - - ~ . f  } = N ~ 1 + f ( ~ - -  1/7t)/  N-~ " 

(5.1o) 

and when x--+ oo 

It is easy to check that the known universal coefficients are correctly reproduced. 
In particular, when ~ = 1/= 

f l ( f ) =  - - - -  1 +  + 

(5.11) f l ( f )  = -- 1 - -  1 + ~  + 

as expected for O(2N)  non-linear sigma-models. 

5"2. The two-point.function: regularization. - We now focus our attention on 
the properties of the invariant two-point correlation function of the fields in the 
fundamental representation. Let us define 

(5.12) G(p)  = d2xexp [ipx] ( -~(x)z (O)  ) =_ 

1 1 1 Z1 ( p )  p~ 2 + 0 . 
-- p,e + ra~ N 1o ~ + m~ + m o  \ N " }  

The O ( 1 / N )  contributions to the two-point function are drawn in fig. 5. We 

"C~;  
+ I + �9 �9 -[- i 

Fig. 5 . -  O(1/N) contributions to the two-point function. 
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obtain 

(5.13) f d2k A (a) (k) 
2 :~(p)=  (2u) 2 ( p + k )  2 + m o  2 

f d2k d2q 1 A(~)(k) 
--A(~)(O) (2u)2(27:)2(q2+mo2)2(q+k)2+m~ 

f d2k (2p. + k~)(2p~ + k~) + 
A (k) (o)~v 

(27:) 2 (p + k) 2 + mo 2 

f d~k d2q 1 
+ A(~)(0) (2u)2 (27:)2 (q2 + mo2)2 

A (o)~,~ (k) (2qf, + k~,) (2q~ +2 k~) 
(q + k) 2 + mo 

By straightforward manipulations (essentially replacing zero-momentum insertions 
of the aq-field with derivatives with respect to mo2), eq. (5.13) can be recast in the 
form 

(5.14) 
f d2k A(~) (k) 1 (" d2k 

2:1 (p) = (27:)2 (p + k)~ + m~ +-~ A(~) (O)J (-~u)2A(~) (k) ~m~ A( )~I (k) + 

~ d2k [ (2ps+k~,)(2p~+kv).] + 
+ J(-~.)~(o)~(k) ~ -  ( p +  k) 2 + m~ 

d2k ~ 1 + ~A(~)I (0) J (~u)2A(o)~,v(k) ~m~A(o)~,~(k) 

Furthermore, explicit knowledge of the propagators allows us to make use of the 
identities 

(5.15a) 

(5.15b) 

(~mo p7~2 , 

A-  1 2 -1 
5mo2 ( o ) ( P ) = p ~  A ( o ) ( p ) - u  4~m " 

As a consequence, we obtain the representation 

f d2k A(~)(k) ~ d2k A(~)(k) 
(5.16) Z I ( P ) =  (27:) 2 ( p + k )  2 + m ~ - ~ ( 2 7 : )  2k 2+4m~ + 

+ (~)2A(o)(k) 1 - k 2 [ ( p + - ~ ; ~ o 2  ] -J ( -~)  2A(o)(k) kU+4m~ 

1 f d"~k 
x (27:) ~ 

PEW___ m~[1 - 

k ~ L ( P  

+ 

+ k) 2 + m~J" 
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The last term in eq. (5.16) reflects the dependence on the longitudinal degrees of 
freedom of the field. Its contribution can be computed in closed forrn (after 
regularization) and it amounts to 

" In ,, in . 
x m;  2~ m0 J 

Equation (5.17) is singular in the ~---~0 limit, when the model becomes gauge- 
invariant and the contribution of the longitudinal degrees of freedom becomes 
gauge-dependent. 

The regularized version of eq. (5.16) is obtained by applying the SM scheme 
prescriptions: 

i dk:~[ 2re 2rc(3 -- 2re@ ~ 2 m I  
(5.18) x'; "~ (p)  = Z~ (p)  - ~-~ b n  (kTm~)  + in (ke/mo) + 2;zx - 2J  k e 

M z 

dk ~ 2re 2re �9 2 p" + .rn~ 
- -  - -  o . )  9 ,) 

4u In (k~ in (k"/mS) + 2uz -- 2 + k 2 
,;I 2 

Equation (5.18) implies the possibility of parametrizing z~]eg(iO ) in the form 

(5.19) x?~(p )  = z~n(p)  + 

+ m S  l n l n ~ T + ( 3 - - 2 ~ x )  ln l n ~ + 2 r C ~ - - 2  + C , , ( x )  + 
me, mo 

+ ( P ~ + ' m O  l n l n - - - - l n  l n - ~ + 2 r c ~ - - 2  + - - l n  , 
m;  mo 4 ~  mSJ 

where ~ n  (~O) is a regular, M-independent function of p2 (and ~) subject to the 
normalization condition 

(5.20) Z? '~ (im{O = O, 

and c , . (z)  is a numerically computable constant. 

53. Mass and wave-function renormalization. The interpretation of 
eqs. (5.19) and (5.20) becomes straightforward in the context of renormalization, 
when we identify G(p)  with the bare two-point function and write 

1 Z 
(5.21) -- 

1 1 '~ ~'reg ])2 ~/~2 _ _  ~'fin 
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Equation (5.20) is then the on-shell renormalization condition and 

(5.22a) = m o + ~ m o  ln~-+(3--2zc~)ln +27:~--2 +Cm(~) , 

(5.22b) l I ~  27: ( f )  ~ - f l  Z = I  2~ in ~ In - - + 2 7 r u - 2  + . 

In particular eq. (5.20) ensures that the mass gap m 2 is identified as the pole of 
the two-point function and its O ( 1 / N )  contribution m~ satisfies the condition 

2 ~eg ( imo) (5.23) ml = . 

Applying eq. (5.23) directly to eq. (5.18) we obtain the representation 

(5.24) ml ----" j ~ ~ (a) (P)  p - - ~  + A (o) (P)  (~ -- 1) + (uu -- 1) ~ - 1 -- 

o o  

-- -~u Lin (p~-/mg) + in (p2 /mg)  + 27c~ -- 2 p2 , 
M 2 

allowing a direct determination of cm (~), which is plotted in fig. 4. 
In the ~---. 0 limit, cm (x) is an infrared-divergent quantity, which shows that in 

the CP ~-1 models no single-particle mass for the fundamental fields can be 
consistently defined [114]. This is a reflection of the gauge properties of the model 
and is further evidence for confinement. More generally, it is pleasant to notice 
that m~ does not depend on the longitudinal degrees of freedom of the vector field, 
as a consequence of gauge-invariance of the couplings and the on-shell condition. 
This allows a direct physical interpretation of eq. (5.24) also in those instances 
(e.g., the ~ - -  1 /~  model) where we are dealing with a gauge-fixed version of 
a theory enjoying gauge symmetry properties. Actually we can compute exactly 

(5.25) c.~ (1/7:)  = 2~E. 

Equation (5.25) can be shown to be consistent with the 1 / N  expansion of the 
exact result (4.16). The 1/~ expansion of eq. (5.24) leads to 

_ _  _ _ ] _  (5.26) c~ (~) = (27:~ -- 3) In 27:~ + YE + In 4 -- 2 + 2~ 

The large-~ limit of eq. (5.24) is [116-118] 

2 m~[ ln  27: _ __27: ] (5.27) ml ~_.~ ~ + ~E f + l n4  , 
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consistently with the exact result (4.15). In the same limit one may also show that 

[ (5.28) lira 5121 (P) 1 2re , -  l n - - + y ~ - - l n - - -  1 
p-'+,,.~-.0+ 5p ' ~-.oo 2 f 2 ' 

and the on-shell renormalization condition can be imposed on Z. 
It is pleasant to notice that eq. (5.22a) allows an independent determination of 

the renormalization group fi-function and the result is completely consistent with 
eq. (5.9). As a consequence the adimensional ratio 

F 1 [ N +  cr (x)  c , , ( ~ ) ] +  O ( N  ) (5.29) �9 - -- 
m 2 4~ 

is universal and scheme-independent.  It is interesting to notice that one obtains 
from eqs. (5.6) and (5.26) the relationship 

(5.30) cF(~) -c , , (~ )=- - l+  O ( 1 ) .  

An alternative renormalization-group-invariant definition of the correlation 
length can be defined starting from the second moment  of the two-point correla- 
tion function 

(5.31) 
<x  2} = S  d~x�88 x2< 5 ( x )  z ( 0 ) )  

d2x < z (x) z ( 0 ) )  

In momentum space this definition leads to the relationship 

1 2 
1 mo + ~ 12~ (0) 1 

(5.32) m~ --- ~_ ~ m~ + I21 (0) -- mo 12~ (0)) 
( x  } 1 r 

1 + N ~ 1  ( 0 )  

where 

5 ~ 1  ( P )  (5.33) Z'l (p )  =- - -  
5p 2 

Substituting eq. (5.19) in eq. (5.32) and comparing with eq. (5.22a), we can 
easily show that 

(5.34) 1 (2~1~r' 2 m 2 m 2 __  o y, rfin 1 
rnR - + 5rn~ = + N V v ' /  

Keeping also in mind eq. (5.20), we come to the conclusion that arn~ is amenable 
to a (typically small) calculable constant, which can be interpreted as a universal 
scheme-independent adimensional ratio. The O ( 1 / N )  contribution to 8m~ is 
plotted as a function of ~ in fig. 6. 
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10  ~ 

~. 10  -1 

10 -2 

0.0 0.2 0.4 0.6 0.8 ~ 1.0 

Fig. 6. - T h e  O(1/N) c o n t r i b u t i o n  to 6m~,  as a f u n c t i o n  of n. 

Equation (5.32) becomes singular in the ~---~0 limit, when only gauge- 
invariant correlations can be sensibly defined. The strategy for such computations 
is discussed in ref. [114] and is not especially relevant to our present analysis. We 
only mention that gauge invariance is obtained at the price of introducing ,,strings,, 
connecting the z-fields, and defining 

(5.35) G~ (x, y) = 5 (x) exp f dt ,  0~(t t z ( 0 ) > .  

x 

String renormalization is required. It is then possible to define < x ~" >4 in analogy 
with eq. (5.31). 

We stress that the gauge dependence of the definition (5.31) makes the 
2 observable mR dependent on the longitudinal degrees of freedom of the vector 

field. Therefore it has no direct physical interpretation in those special cases when 
we want to recover the gauge-invariant properties of a gauge-fixed model. Similar 
considerations hold for the so-called magnetic susceptibility 

( 1  I ZI (0)~ 
(5.36) Z =  d 2 x < z ( x ) z ( O ) > = 2 f G ( O ) ~ - 2 f  2 o g -m~o -/" 

The value of ~.reg "~1 (0) can be computed analytically for special values of ~; ignoring 
the contributions of the longitudinal degrees of freedom we have (cf. ref. [116]) 

= ~  l n - 7 + Y E - c l  , (5.37a) mo I~=1/,~ 

(5.37b) 

where 

~reg 
1 ( 0 )  

2 
"D% 0 = ~  

2u ] 2u 
3 in--+?E c~ + I n 4 ,  
2 f f 

(5.38) c 1 = In ~ 0.4861007. 
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We can adopt a wave-function renormalization condition slightly different from 
eq. (5.22b), defining the renormalization constant 2 by 

(5.39) ~ _  )~mR 1 1 
- -  - -  1 - -  - - Z '  1 (0) "~ 0 
2j N 

It is easy to check that the ratio of the two definitions is a fi-independent constant: 

(5.40) - = 1 -  z ;  f ~ ~  . 
Z 

Finally it is possible to compute the renormalization group function 7 ( f ) ,  after 
its definition 

(5.41) 7 ( f )  = -- fi (.f) ~ , l n  [ 2 f Z ( f ) ] .  
o]  

Ignoring the contributions from the longitudinal degrees of freedom of the vector 
field, we obtain 

1 )] f 
(5.42) 7 ( f )  1 + 1 + + 0 = . . . .  } 

7~ 2N N ~ 1 + . f ( z  -- l / x )  

and, specifically for O(2N) models, 

(5.43) 7 ( f )  ~ '  1 1 + -  . 
2 )  N 

Here and in the following, when checking agreement with the expressions presen- 
ted in Appendix A, one must perform an appropriate change of variables, whose 
form may be extracted by comparing SM and MS //-functions. 

54. Correlations of composi te  operators. - Another very important class of 
correlation functions is obtained by considering the Green's function of the 
(gauge-invariant) composite operators 

(5.44) P,j (x)  = 5~ (x)  zj ( x ) .  

We have shown in ref. [114] that, for C P  N-1 models (~ = 0) 

B(x -- Y) (3*~3Jk -1~ ) 
(5.45) G,j ,~(x - y )  - ( P i j ( x )  Pkz( y)  )c ...... - N ( N  + 1) ,j3~ , 

where 

N- -1  
+ ~ - 1 ) ,  
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and in tu rn  / I o  ~ =NA(-~ and A1-1 is expressed  to O(1/N) by the sum of 
-1 is the sum of all the  F e y n m a n  diagrams drawn in fig. 7. More generally,  A1 

diagrams such that  the ex te rna l  a legs emerge  from the same effective ver tex  
(general ized tadpole contr ibut ions) .  

oo--. 

----@--- - - -0 - -  + --@--- 
�9 

+'- - - -0 - -  + ---(1)-- 
Fig. 7. - Contributions to A 1-1, the correlation function of the composite operator Pu(x). 

This  analysis applies almost  li terally to the more  general  case p resen ted  here ,  
and we can quote  the final resul t  which  is just  a very  slight general izat ion of 
eq. (8.20) in ref. [114]: 

(5.47) 
~" d2k [ ~/-'(p) = - j  (--2--~)~(,) (k) V(a)(p, k) + V(4a)(p, -- k) + v(4b)(p, k) + 

1 o  lf,  { 
+ k 2 + 4 m ~  5m~ A(~)(p) -- (2-~n) 2A(~ (k2 +4m~ " 

�9 [Y(4 a)(p, k)+V(4 a)(p, - - k ) ] - - 4 [ Y  3 ( p ,  k ) +  Y 3 ( p ,  - - k ) ]  + 

k 2 + 4~xmo 2 ~ } 
+ ( k  ~ + 4 m ~ + 2 p  2) V~ b)(p, k)+ k2 +4m~ 5m~A(~(P) . 

The  effective vert ices en ter ing  eq. (5.47) are drawn in fig. 8. The  formal  defini- 
t ions of V3, V(4 a), and V~ b), together  with the i r  explici t  express ions  in t e rms  of 

V 3 (p, k) -- 

. p  

k - p - - ( ~  

~'-k 
(a). k _ (b) k - p  

= v 4 (p, k) = ", �9 

p"  -k p , �9 -k 

-k,v h~,..,~," P p , ~  -k,v 
(a) { ) T (b) r 

V,v (p, k) = v~v tP, k) = 
k,/l ~ " J ' ,  -p k,# -p 

Fig. 8. - Effective vertices in the continuum. All momenta are entering in the diagrams. 
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elementary functions, can be found in Appendix D, We stress that algebraic 
manipulations, based on the gauge invariance of the effective vertices, lead to the 
possibility of replacing all explicit dependence on the mixed vector-scalar vertices 
appearing in fig. 7 with purely scalar vertices. 

Regularization and renormalization are straightforward along the lines presen- 
ted in ref. [114]. One may analyse the large-k behaviour of the effective vertices 
and find that the ultraviolet divergence of eq. (5.47) is regulated by the SM 
counterterm 

(5.48) 
47: k 4 

M 2 

dk 2 A i0) ~"~ - 
- 4~  k ~ 4 ~ , , r  . 

M 2 

Equation (5.48) shows that renormalized Green's functions are obtained by mass 
and wave-function renormalization, and in particular mass renormalization is once 
more consistent with eq. (5.4) and eq. (5.22a), while wave-function renormaliza- 
tion is obtained by defining 

(5.49) Z~,= 1 - - -  2 1 n - - - - 2 1 n  + 2 r c ~ - - 2  +Cz(X) . 
N .f 

We can extract from eq. (5.49) the anomalous dimension of the composite field 
P~ in the SM regularization scheme: 

(5.50) 
5 

Ye(f)  = - ~ ( f )  ~--fln [4fZZp] = 

- - - - 1 + -  
re N + 1 + f ( ~  -- 1/r0 + \ N ' J  

We notice that, in contrast with eq. (5.225) and consistently with the gauge 
properties of P~j, Z~ is independent of the longitudinal degrees of freedom of 0,. 

A magnetic susceptibility and a second moment of the correlation function can 
be defined for the field Pij. These quantities can be shown to satisfy all the 
renormalization group requirements. In particular 

(5.51) 
l X ~ ( xZ )z  = ~ da;v ~ ( tr {P(x) P(O)} } 

j" d~x ( tr {P (x) P (0) } ) 

can be used as an alternative definition of the correlation length. In the large-N 
limit, 

1 (1) 
(5 .52 )  ( x ~ ) " -  6mo + o . 
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In analogy with eq. (5.39), we can obtain a computationally convenient  
definition of renormalization constant  Zp by the prescription 

2T~ •p 
(5.53) 2 p -  - -  

3 ( 2 f )  2 ( x = } e - -  

2 I I S  ( 1 2 i-' ) J - '  = O ( 1 )  = y  A(~)(p)-~A(=)Cp)A (p)  + ~ , 
= 0  

where 

(5.54) ~(p = S d=x{ tr {POx) PC0)} } 

and we fixed the normalization by noticing that 

(5.55) (~) (P) 2u 

In order to regularize eq. (5.53), we apply eq. (5.48) and recognize that the 
-~ is simply structure of the counter terms of A~)A1 

oo 

(5.56) 4 - (~) (k) ~ I ~ 
47r \ k 4 4 A (~)(p) + 

M 2 

+ 4TO \ k 4 
M 2 

Now, noticing that 

(5.57) 

(0) k 
- - + 2 ( 3 - - 2 T C ~ )  A(o)( ) ~ m  2 

2~ 1 ~ m0 ~ ~(~)(p)  = 0, 
/0 2 = 0  

we immediately check that eq. (5.53) is consistent with the parametrization 
(5.49); cz(u) can be computed numerically and is plotted in fig. 9. It is worth 
noticing that  cz(u) is finite for x--*0. 

0.0 
C Z 

-2.0 

-4.0 

-6.0 

-8.0 

0.0 0.1 0.2 0.3 0.4 

Fig. 9. - Cz, the finite part of the renormalization constant Zp. 
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55.  Wilson loops and static potential. - Having exhaus ted  the discussion of 
the correlations of fundamenta l  fields that  may be relevant to a O ( l / N )  analysis, 
we would like to consider  also the properties of (gauge-invariant) correlations of 
the vector field 0,.  These correlations are most natural ly  expressed in terms of 
expectat ion values of the Wilson loops. The vector field being Abelian, no path 
ordering is required and the general  definition, for arbitrary loops ~,  is 

= 1----2N dtu dr: ~ e x p [ i k ' ( t - - t ' ) ] A ( o ) , ~ ( k ) + O  -N5 ~ . 

~, cd 

We defined L ( ~  7) having in mind the interpretat ion of our Lagrangian as an 
effective theory for an under lying gauge-invariant model where  the gauge field is 

! Ou, not the original vector field 0u. 
For our purposes we shall only consider long rectangular  loops of size R x T, 

and consider  the limit T--~ oo. The quanti ty 

1 
(5.59) V(R)  = -- lim - - In  L(R,  T) 

T-* oO T 

can be interpreted as the interact ion potential  generated by vector fields between 
two static sources. This quanti ty is relevant to the discussion of the non-relativistic 
bound-state spectrum, a reasonable approximation in the large-N limit. One can 
easily show that  V(R)  does not depend on the longitudinal  components  of 0u, and, 
within the 1 / N  expansion,  one may generalize the result  of ref. [114] to 

; (5.60) N V ( R )  _~ - 2 cos (kR)  A(o~(k) ~ + 2 [A(~ -- A(~ 2Tr' 

IJ O 

A (0) where -(0) (k) is defined in eq. (5.3b); it has been in t roduced in the context  of SM 
regularization of the loop ultraviolet singularities giving rise to the so-called 
,,perimeter term,,. Rotating the integration contour  in the complex k plane to 
k = / x  + e we finally obtain the following representat ion of the static potential,  for 
0 _< x _< 1/~: 

oo 

V(R ) f [  dk  (5.61) N - -  ~ 2 A~o)(k) -- A (~ 
m() = (o)(k)] 2umo 

0 

mo/(4mo)  m o  1 - ~ ,2 
- -  ~ ,, e x p [ -  moR ] -- 
mo mo/ (4mS)  -- ~ 

f 2u~' dx  
- - e x p [ - - x R ] [  __1+~' 1 ~ , too' 

..... ~ ' l n  1 - - ~ '  + 2 ~ : ~ - 2  +7r2~ '~ 



3{) M. CAMPOSTRINI and E,. ROSSI 

where 3 ' =  x / 1 -  4 m ~ / x  2 and we have defined the mass mo according to 
eq. (3.11). In fig. 10 we have drawn the function N V ( R ) / m o  for a few different 
values of ~. 

10 

o 5  

-5 
0.0 0.2 0.4 0.6 0.8 1.0 

moR 

Fig. 10. - The static potential V ( R )  for several values of ~. 

Equation (5.61), considered as a function of ~, interpolates between the linear 
confining potential at ~ = 0 and the limiting case ~ = 1~TO, when lim V ( R )  = 0 

R---~ oo 

and the bound-state spectrum finally disappears, while me = 2m0. The qualitative 
discussion of the properties of the models as a function of • presented in sect. 3, 
is essentially based upon an analysis of this static potential, plus the information 
coming from integrability at ~ = 1/~. 

A more quantitative discussion of the bound-state spectrum can be obtained, 
for sufficiently large N, by considering the semiclassical approximation, i.e. by 
solving the SchrSdinger equation in the asymptotic potential Vas (R). V~s (R) is 
obtained by removing from eq. (5.61) all the contributions not affecting leading 
order predictions, and it can be represented in the form 

(5.62) Vas (R, • _ 6rim______ 0 A (1 -- exp [-- m0R] ) ,  
N 

where 

X 
(5.63) A (x) = - 

1 1 2 

6 1 ~ x 2 - 1 +  x / 4 / x  2 -  1 a r c c t g ~ 4 / x  2 - 1 '  

enjoying the property 

(5.64) lim x A  ( x )  = 1. 
X-4OO 

The analysis of the resulting Schr6dinger equation is presented in some detail in 
Appendix E. In the case ~ = 0 ( C P  N- 1 models), the analysis of the SchrSdinger 
equation in the linear potential was presented in refs. [97, 119] and in more detail 
in ref. [93]. 
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5"6. Topological charge and susceptibility. Before concluding this section, 
we must  ment ion  that, in the special case ~ = 0, the 1/N expansion can also be 
applied to the problem of the so-called topological susceptibility 

(5.65) Z, = ~ d2x< q (x )  q(0)  },  

where 

(5.66) 
i 1 

= --gl,~O~,O~ q(x) ~ e , ~ D ,  zD, , z=  27c 

is the topological charge density. One can easily show that  

1 
(5.67) )6 = tim Pe A,0-~ (P)  ,,~,, (2~) e , 

where ~(o)(P)  is the full propagator of the quan tum field 0,.  ;~t is trivially zero 
when  ~ # 0. 

In the large-N limit, eq. (3.10b) implies the simple relationship [95] 

3 m ~ + O  (5.68) Z, = ~N 

The computat ion of the 1/N e corrections to the inverse vector field propagator was 
performed in ref. [120]. They can be obtained from the diagrams of fig. 11. The 
vector and mixed scalar-vector vertices can ben replaced by combinat ion of scalar 
vertices; the result  is 

(" d2k 
(5.69) 

OLZr U- 

where 

[" dek 
w,(k, p ) -  p ) -  

f dek A(=)(k) + kea(o)(k) 5 _, 
(2~) 2 k z + 4mo 5'mi~ A (o) ( P ) ,  

(5.70a) Wl(k, p) = - (pe+4m~)[V~ ~)(k, p) + V~ ")(k, - p ) ] -  

- (p~ + 2k" + 4m~) Y?) (k, p) + 4 [Y.~ (<  p) + ~ (< - p)] ,  

; \ 

"O';  

Q 

Fig. 11. O(1/N e) contributions to the topological susceptibility. 
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(5.70b) W2 (k, p) = (p2 + 4m02) (k 2 + 4m02) [V4(a) (k, p)  + V4 (a) (k, -- P)I + 

+ (p2 + 2k 2 + 4m02) (k 2 + 2p2 + 4m02) y4(b) (k, p)  -- 

- - 4 ( p 2 + k  2+4m02)[V 3(k, p ) + V 3 ( k ,  - - p ) ] - -  

k2p 2 
2 (k"  p)e [A (~) (k + p)  Z2+ (k, p)  + A (~) (k -- p)  Z 2_ (k, p) ] ,  

and in turn 

(5.71) Z+(k, p)=(p2+k2-t-4m~)V3(-T-k, p ) - A ( ~ ( k ) - - A ( ~ ( p ) .  

A property of We (k, p)  relevant to the computation of higher-order corrections to 
the slope of the linear static potential is 

W2 (k, p)  4 1 
(5.72) lim 6" kep 2 45~ m0 p--~0 

k--*0 

Ultraviolet regularization in the SM scheme is straightforward and can be proven 
to be consistent with the expected renormalizability properties of the model: only 
mass and z-field wave-function renormalization are required. 

The 1~N-expandable, dimensionless ratio R = X~<x 2 >p is computed; it takes 
the scheme-independent value 

111c  (1)1 (5.73) R - 2 T c N  + N -  + O  ~-~ , 

where cR = -- 0.380088. 

6. - Latt ice  f o r m u l a t i o n  of  t w o - d i m e n s i o n a l  spin m o d e l s .  

It is well known that infinitely many lattice actions share the same naive 
continuum limit. However, from the point of view of numerical simulations, the 
choice of a lattice action is a quite important topic, because one is trying to 
optimize the speed of the computation and the width of the scaling region. In the 
lattice 1/N expansion, which we are discussing, another relevant criterion of 
choice is the possibility of performing analytic calculations as far as possible, in 
order to keep under control and possibly minimize the number  of the altogether 
unavoidable numerical integrations. 

In a formal approach (and for one-coupling models), one might follow the 
original suggestion by Stone [121], and adopt a lattice action defined by the kernel 
of the heat equation on the manifold where the fundamental degrees of freedom 
are defined. This choice has the advantage of corresponding to the fixed-point 
(continuum limit) action in the exactly-solvable one-dimensional case[122]. 
However, for our purposes it is definitely more convenient to consider actions that 
are polynomial in the fields. 

In passing we mention that a lattice Hamiltonian formulation was introduced 
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by Hamer, Kogut and Susskind[123], and studied in the large-N limit in 
refs. [124-126]. 1 / N  corrections have not however been evaluated. 

We shall discuss a number of possibilities, and finally focus on those formula- 
tions that meet the above-mentioned criterion. 

6 1. N e a r e s t - n e i g h b o u r  q u a d r a t i c  a c t i o n s .  - The lattice counterpart of 
eq. (3.1) satisfying the request that only nearest-neighbour interactions be 
involved and no term higher than quadratic in any given field be present is [7] 

(6.1)s<') = N  F. {/L [2 - ;~,,+. z . -  5, ,z , ,+.  l + / L [ 2  - 5 , ,+ .  i , , , .  z , , -  5 ,~ , ,~ .  ~. ,+.1},  
it, ,~1 

where the N-component complex field z,, satisfies the constraint 

(6.2a) 5 , , z , ,  = 1 

and we have introduced explicitly in the action a U(1) gauge field 2,2,, satisfying 

(6.2b) 2,,,. 2,~,, = 1. 

This form of the action was introduced in the literature and its large N features 
were discussed in detail in ref. [7]. Recently the case fl~, = 0 ( C P  N-1 models) of 
eq. (6.1) has been the starting point of many numerical simulations at small and 
intermediate values of N[127-130]. 

6'2. N e a r e s t - n e i g h b o u r  q u a r t i c  a c t i o n s .  - It is possible to write down a gauge- 
invariant lattice action without explicitly introducing a U(1) gauge field [131, 132]: 

(6.3) ~ '~  = N /L  Y~ [1 - I~,~+, z,, 12] ,.a g4 

This used to be a favourite version of lattice C P  N-  J models, especially because of 
the property that the N = 2 action is completely equivalent to the popular standard 
lattice action of the SU(2) ~ 0(3)  non-linear a-model. r is sometimes referred ~'g4 

to as the ,,adjoint,, form of lattice C P  N-  1 models, and is characterized by possessing 
a large-N first-order phase transition, that does not, however, show up for any 
finite value of N. 

The mixed action obtained by combining S (1) (for fl~ = 0) and S~ ) is also 
solvable in the large-N limit [7]. More generally, the qualitative features of the 
phase diagrams for mixed actions can be explored, for finite N and in the 1 / N  

expansion, by the mean-field technique [133-135], which is an increasingly accu- 
rate description of the lattice models when one considers higher and higher space 
dimensionality. 

However large N studies and numerical simulations have shown that the 
approach to scaling of ~o4~(:~) is very slow even for quite large correlation lengths, and 
the situation is even worse for what concerns asymptotic scaling, since the large-N 
fl-function gets contributions to all loops, in contrast with the continuum and the 
action (6.1) (cf. ref. [134]). We shall therefore avoid any further effort concerning 
eq. (6.3) and its 1 / N  expansion. 
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63.  N e x t - t o - n e a r e s t - n e i g h b o u r  ac t ions .  - It is obviously possible to formulate 
the models in terms of next-to-nearest-neighbour interactions: 

(6.4) S ~ = g  ~ ~/L[2-~,,+~.z,~-~z,,+~,,]  + 

1 

and similarly 

(6.5) 
1 

S(2) g4 - -  4 N f l ~  ~ [1 - 15 , ,+2 ,  z~121 . 
n , #  

More generally, any combination in the form 

(6.6) c l S  (') + c ~ S  (2), c~ + c2 = 1,  c~ > 0 

is a lattice action belonging to the same universality class. Amongst these combi- 
nations, a special rSle is played by the choice 

(6.7) sSy ~ 4S(t) 1 S(2) 
3 3 

corresponding to the so-called Symanzik tree-improved version of the model 
[136, 137]. The choice S sy~ corresponds to forcing a short-distance (ultraviolet) 
behaviour markedly more similar to the behaviour of the continuum action. As 
a byproduct, the leading logarithmic dependence on the correlation length of the 
deviations from scaling is removed and the scaling region is therefore enlarged. 
This makes eq. (6.7) a natural candidate for numerical simulations of the models. 

In our discussion of the 1 /Nexpansion,  we shall try to carry the analysis of the 
general case c~ S (') + c2 S (2) a s  far as possible, and we shall concentrate on S ~ 
when its peculiar analytic properties will become crucial to the development of our 
study. 

7.  - 1 / N  expansion on the lattice: effective action, propagators and vertices. 

In the context of the 1 / N  expansion, the crucial property that selects quadratic 
actions is the possibility of performing the exact Gaussian integration over the 
z-fields at the only price of introducing a scalar Lagrange multiplier for the 
constraint (6.2a). 

Let us introduce the matrices 

(7.1a) ~'(~)~ = fl~, ~ (26,,~,n- ~.~+.,~ -- ~,n+~,) + 
u 

+ fig ~ (25.,,,~ -- A...,. 5 , , , .+ . , , , -  ~-,,,,~, 5,,,,,,+~,), 
,u 

1 
(7.1b) ~[(2) = ~fl,, E (25..,n -- 5~+z.,n -- 5 ...... +2.) + 

/L 

1 + ~-/L Y__, (25 ..... - s .L,+.,,, 6~+~. .... - -~o,,. -~.,_.,. ~.,,.,+.~.), 
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and obtain the effective action in the form 

(7.2) S,.ff = N Tr In c~./r162 ....... + (--ion,,). 

In order to perform the expansion,  we must  solve also the constra int  involving the 
2,,, u fields, which can be done by setting 

(7.3) '~,,. u = exp ['i0'., . ] ,  

t where 0',,,. is an (uncons t ra ined)  real field essentially playing the rSle of 0 u in the 
con t inuum version. 

Assuming translat ion invariance of the classical fields ~,, and 0',,, u, we can write 
down the effective action in m o m e n t u m  space: 

(7.4) S,,ft- N | . 7 . , , ~ l n l - - c e + c ~  fl,, 4 s i n 2 P u + f l , j  4s in  2 p u + O  - -  z c .  

J (2r0 ~ [ L2 f  , 2 . 2 

sm pu + fl~j ~ sin z ( p "  + 0 . )  - . 
g 

A solution of the saddle-point equation is easily found to be 

(7.5) 0 . = '  0 , a = - - ' tmo,  

where mo is defined by the mass gap equation 

1 _ ; d'-'p 1 
J �9 9 1 (7.6) 23" (2r0 ~ c~ ~ 4 s ln '~  Pu + c~ ~ sin2pu 

tt tt 

+ rn~ J ( 2 u )  ~ p - + m ;  

we adopted the s tandard notations 

1 
(7.7a) /3u _---- 2 sin ~ p , ,  /3 2 -- ~/32u, 

/t 

(7.7b) ~e _ c~ ~, 4 sin~ ~ p .  + c2 ~, sin2pu = 
,u 

= Pu C 

(7.7c) (~9-~) ~ -- ~-~ 2re 

tt~ 

1 -'['- 6 2  COS~ f f  P i t  - -  b 2 __ m 
1 *'4 C2P , 
4 

Going back to coordinate space, taking the second functional  derivatives with 
respect to the fields ~,, and 0'..., and evaluating them at the saddle point defined 
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by eq. (7.5), we obtain a representation of the lattice propagators of the effective 
fields: 

(7.8a) A(~ (k) = f 
d2p 1 1 

- -  2 l k 2  ~ '  (27r) 2 p + l k  2 + m0 p -  ~ + m~ 

(7.8b) A(-~)'F,~(k ) = (1 + ~ f )~ .~  f dzp 2c~cosp .  + c2cos2p~,(1 + cosk . )  _ 
(27r)2 ~2 + m02 

- I  ~2~ [ ~ i ( k , - -  k~)] �9 exp 

(2c~sinp~ + c2sin2p~cos �89 (2c, sinp~ + c~sin2p~cos~k~) 
~ 2  [" ~ 2  

(p -- ~k + 
! 

where the O'.-field has been rescaled to 0.  = 0 . / ( 1  + uf) .  
The effective vertices are obtained by taking higher-order functional derivatives 

of the lattice effective action. They are in the form of one-loop integrals of the 
fundamental  fields propagators. Computations can be cumbersome, but they are 
conceptually straightforward. The Feynman rules needed for the computations are 
summarized in fig. 12. We used the notation 

1 
(7.9a) V3~ (p, k) = 2c~ sinp~ + c~sin2p~cos ~k~,  

21 
(7.9b) V4.(p, k) = c l c o s p .  + c2cos2p ,cos  ~ k , .  

As discussed in sect. 3, the vertices are gauge-invariant for all values of ~. As 
a consequence, the following relationships hold: 

(7.10a) ~ f~V3~(p, k ) = p + l k  2 _ p _ � 8 9  2 , 
it ( 1 )  

(7.10b) 2f~,v4,(p, k ) =  V3, p + ~ k ,  k -- V3. p---~k,  k . 

2 2 
p + m 0 

k~ 
( 

. . . . . . . . . . .  1 ~.)(p) 
- exp[ l ik  ] V3~(p,k) 

N p l k p+l_ k 2 " 
2 2 

k z - kv 

~ l z l ( o ) ~ ( p )  r "~ 
N - (1 +~f) 5~v V4~ (p, k) 

P P 

Fig. 12. - Feynman rules for the 1/N expansion on the lattice. 
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The notations we have introduced allow the following representat ion of the 
effective vector propagator: 

(7.11) A ~ . ~  (k) f d"p V41,(P, k) 
= 2 ( 1  + ~ f )  5 ~  (2~) e ~e+m~) 

{1 I f  dep Va,,(p+lk, k) Va~(k2P+lk, k) 
- - e x p  ~i(k~,-k.) (2rt) e (~"+m~)(p+ +mo) 

By applying eqs. (7.10), we may check that  

# [ ]; 1 } 1 d~p Va,, (p + i k, k) Va~ (P + ~) k, k). 0 
- - e x p  ~ i ( k u - - k ~ )  (27r) z ( p ~ + m o ) ( p + k  ~+m~)" = ' 

as an effect of gauge invariance: when  ~ -- 0 the inverse propagator A ~ (k) is 
transverse on the lattice, i.e. it vanishes when  contracted with exp [-- ik,] -- 1 or 
exp [ik~] - 2. It is, therefore,  convenient  to restate eq. (7.11) in a form remini- 
scent of eq. (3.9b): 

(7.13) --1 --1 (k)  at~v (k)  A(o~,v(k) - A(o~, , (k )~ , ,~  + A(o) 

where 

(7.14) 

~"] ' = _t d~p v~, (p, a) (7.15a) ~aa~o).(k) _(2~)2 ~2 + m~ 

(7.155) A(o, 
(2~) ~ ~+m~,  (2~) ~ ( ~ + m ~ ) ( 7 ~ - ~ + m ~ )  ' 

enjoying the important  property 

(7.16) ~ (~  (o) = 0. 

It is worth noticing that  

1 f f d2p /32 f mo (r.lr) d (-o~i, (k) 
.... ,,~ - a  dca.)~ ~., + m ~ -  ~ - ~  + T  , 

independent ly  of k and #. However, even in this simplified case one cannot  
trivially identify ~ with its con t inuum counterpart ,  even in the scaling regime, and, 
for finite values o f f  X,a, must  be tuned in order  to recover an assigned value of 
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8. - Integral representations of lattice propagators. 

We mentioned in sect. 6 that some powerful analytical techniques can be 
applied in some specific version of the model. In this section we introduce the first 
of these techniques, the use of integral representations of lattice propagators. We 
could only apply this technique to the case c~ = 0 (nearest-neighbour interac- 
tions) which we shall discuss in great detail. 

When c2 = 0 dramatic simplifications occur already in eqs. (7.8). By simple 
manipulations and use of the gap equation 

(8.1) 
1 ~ d2p 1 

J 2 f  (2rt)2 /32 + m~ 

we obtain 

_ f d2p 1 1 
(8.2a) ~ ~ (k)--- - ,  /32 o .,, <,~o (27t) 2 + m~ p - - ~ 2  + m~ 

(8.25) A (0) (k) ~-~0 25 (2u) ~ (/32 + m~) (p~Jr-k~ + mo 2) " 

The first analytical result concerns eq. (8.1), that can be cast into the form 

1 
(8.3) 

2 f  

1 1 ( 1 )  
21t 1 + m~o/4K 1 + m~/4 

where K is the complete elliptic integral of the first kind. It is also possible to 
evaluate in closed form the inverse propagators along the principal diagonal of the 
momentum lattice, i.e. when k~ = k 2 -- 1. We change variables to q~ = ~(p~ + P2) 
and q2 = �89 --P2), and notice that, for any periodic function f ( p , ,  P2) we have 

f dpl dp2 dql dq2 
(8.4) ~ -~-~f(Pl, P2) = - ~  -~ f (q~  + q2, ql -- q2). 

In the case kl = k2 = 1 in particular 

(8.5) /32 -- 4 (1 -- cos ql cos q2), 

~-"-"~- 2 
(8.6) p + k  = 4 ( 1 - - c o s ( q , + / ) c o s q 2 ) .  

Therefore the q-integrations of eqs. (8.2) can be performed in terms of the 
standard complete elliptic integrals K, E, and /7 (we use the conventions of 
ref. [138]); the result is 

(8.7a) 
i ( costal i ) 

~ ( z ,  z) = 8,~(1 + mU4)  ~rl 5-i + m ~ / 4 y '  1 + m~/4 ' 
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(8.7b) 
1E( 

A(ol (l , l ) =  - - 7  1 + 

AI- ~1  
co ~l 

- . ,  . + 1 ~ - - K  " m ~ / 4  + m ~ / 4  cos e~l rc 1 + " )1( 1) 
- ( 1  (1 + m ~ / 4 )  e re + t o o / 4 / '  1 + rno/4 

In the general case, we had to resort to an integral representation of the 
inverse propagators. Let us make use of the standard Feynman parameters to write 

(8.8) 
1 1 

:~ + "m,/, i ; - ~  ~ " + m; 
f 1 = d : ~  A 2 [~(1-r) + p +  k x +  m~] ~ 

and notice that, via trigonometric identities, 

(8.9) ( p ~ . ) ~  : i5~(1 -- ~/~) + ~z + 2 s inp .  s i n k . .  

Let us now change variables to q.  = p .  + z., where z .  is defined by the relation- 
ships 

[ A,) 
x s i n k .  1 -- ~xk~ 

, C O S  Z #  ~ ^ o  . (8.10) s inz .  x / l _ x ( l _ x )  f(, " x/1 _ x(1  _ x) k; 

Equation (8.10) implies the identities 

(8.1 l a )  

(8.11b) 

A 

1 1 1 s inq .  COS 5k.  + (1 -- 2x) cosq .  sin .,k. 
sin ( p .  + ~ k . )  = 

x/1 - - x ( 1  -- x) k~ 

Substituting eqs. (8.8) and (8.11) in the relevant ome-loop integrals, we obtain 

(8.12a) 

1 

1 

I J A,~ , ' :  d:z ( ~  4 + . m ~ - - E a .  c o s q .  ~ 
o # 

4 + 'tn.~ 
- I  (8.12b) AIo ~ - 1 - 

2,( ,, dx  (2re) e [4 

C - - ~  b~sin 2ql, 
P 

+ trG -- ~" a u cos qu 
tt 
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where in order to simplify the notation, we have defined the auxil iary variables 

^ 2  (8.13a) a .  = 2 x//1 -- x ( 1  -- x) k . ,  

A 2 ^ 2  
(1 -- 2x) 2k .  + k .  -- 4 

(8.13b) b~, = 
1 - -  x ( 1  - -  x )  fc~ 

(1 ~ ̂ 2 - -  2 x )  ~ k .  
A2 ' (8.13c) c = ~ 1 -- x (1  -- x)  k# 

/* 

We can now exploit the relationships 

= 2 d 2 ( 1 - - 2 x )  
2 (8.14a) b.  a~ d x  a .  

(8.14b) c = -- 2 (1 -- 2x) ~ 1 da___~ 
a .  d x  

to perform an integration by parts in the variable x in eq. (8.12b) and obtain the 
more convenient  representat ion 

(8.15) A(~ 

1 

= f d x 2 ( 1  -- 2x) 
/1 

0 

1 d a . ~  d2q 1 
J a .  d x  (2r0 2 4 + m ~ - - ~ a .  c o s q .  

# 

1 d d2q a .  sm q~, 

2 d x  (2tO ~ 4 + m o  a g  

Trivial algebraic manipulat ions  (involving repeated use of integration by parts in 
the m o m e n t u m  variables) lead finally to the form 

(8.16) 

1 ;  12x 2fd q 
A ~  = f~ 2 dx  -- 

0 a l  a2 (2x) 2 [4 

4 cos ql COS q2 

+ m0 -- a .  cos q .  

Starting from eqs. (8.12a) and (8.16) we can now perform the m o m e n t u m  
integrations. One m o m e n t u m  component  can be integrated easily, thanks  to the 
relat ionship 

(8.17) f dO 1 
2~z b - a cos 0 ~ b  2 _ a ~- 
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and its paramet r ic  derivatives. As a consequence ,  we obtain 

(8 .18a)  

(8.18b) 

1; 
A (~ = f dx 

{1 --re 

I 

= d , T  - -  

o 

d q l  
,} 

4 + m8 -- a l  cos q~ 

2n [(4 + 'tn~, -- a, cos q])Z -- a,~]"~';~;" ' 

(1 - - 2 x )  ~ 

a l  

f dql 4 cos q~ 

2n [(4 + m0 -- al  cos q~)2 _ a~ 1,,,:~/., �9 

The  q~ integrat ions in eqs. (8.18) are easily reducible  to s tandard  elliptic inte- 
grals [138]. Without belabor ing on the straightforward algebraic tr icks involved in 
the derivation, we p resen t  the final resul t  in the following form: 

1 

(8 .19a)  

(8.19b) 

where  

- -  dx  
4re 

(} 

1 

1 ~SE(~) 
(al a~) 8''' 1 -- ~2 ' 

(1 - 2x)  ] 
d x  + 2[ ( E ( [ )  -- K ( [ ) )  

(al a2)~/s L1 Z- 

4al  a,2 
(8.20) ~ = (4 + m~) 2 -- ( a l  -- a.0 ~" 

Equat ions  (8.19) lead to an enormous  computa t ional  gain: f rom the numer ica l  
point  of view, the values of the elliptic integrals can be rout ine ly  genera ted  with 
high accuracy,  and there fore  the n u m b e r  of numer ica l  integrat ions is r educed  
from two to one; moreover ,  the x integrat ion is m u c h  more  regular  than  the 
original m o m e n t u m  integration: if we exploit  the explici t  express ions  of A ~ and 
A{T I on the pr incipal  diagonal (8.7) to fu r ther  regularize the integrand,  a 
moderate-s ize  Gauss-Legendre  integrat ion suffices to p roduce  very accura te  re- 
sults. F rom the point  of view of analytic manipula t ions ,  we can exploit  the 
knowledge of the asymptotic  expans ions  of the elliptic integrals to simplify 
dramatical ly  the otherwise quite compl ica ted  problem of genera t ing  an asymptotic  
expans ion  of the propagators  in the small m, 0 (scaling) region. This expans ion  in 
tu rn  is the essential  ingredient  in quanti tat ive computa t ions  for lattice models  in 
the scaling (.i.e. f ield-theoret ical)  regime. We shall discuss this point  in the nex t  
section. Let us only recall  he re  the relevant  expans ion  formulae  of the complete  

elliptic integrals, in the regime k ~ 1, k' = x/1 -- k 2 << 1: 

- -  In k' (8.21a) E(k) 1 + 2 

4 k '~ 4 \ 
- (8.21b) K ( k )  ~ In k' + I n k '  1 ) ,  



42 M. CAMPOSTRIN[  and P. ROSSI  

1(4 
(8.21c) H ( n ,  k) ~ - -  In + In + 

1 - - n  ~ 2 l +  

k,2 ( 4 
+ 4 ( 1 - - n )  2 ( 1 - - n ) l n ~ + x / / n l n ~ - ~ n n ) l +  

9. - Asymptotic expansions in the scaling region. 

We are interested in evaluating physical quantities in a lattice model 
possessing a non-trivial (continuum) field theory limit when the ultraviolet regula- 
tor ( l / a ,  where a is the lattice spacing) is sent to infinity, while properly tuning 
the lattice coupling f according to the renormalization group equation of the 
model. In such a model, lattice expectation values for finite a and f ( a )  will 
necessarily receive contributions from the irrelevant operators included in the 
lattice definition of a physical quantity. In order to isolate the contribution that 
will survive in the continuum limit, i.e. the scaling part of the expectation value, 
we must be able to perform an expansion in the powers of the lattice spacing. 
Within the 1/N expansion of lattice spin models, there is another dimensionful 
parameter that can be employed to classify the relevance of the contributions to 
any given expectation value: the bare large-N vacuum expectation value m~ 
(,large-N mass,,). Since the continuum limit is the limit of infinite correlation 
length, it is also the limit of vanishing m~: contributions carrying higher powers of 
m02 with respect to the scaling contribution will be irrelevant. Actually, since the 
physical value of the mass in these asymptotically-free models is not strictly zero, 
we must be careful not to set m02 = 0 and to get our results in the form of 

2 2 asymptotic expansions in which 1 >> I 1/ ln  (mS a 2) I >> m0 a . 
The detailed analysis of the procedures for the evaluation of physical quantities 

in the scaling region, and the related problem of regularization of the infrared 
2 divergences generated by the nMve m0---*0 limit, will be discussed in sect. 11. 

Preliminary to such a discussion is, however, the asymptotic expansion for small 
2 values of m0 of the basic ingredients in the evaluation of physical quantities, i.e. 

the effective propagators themselves. Due to their original definition as one-loop 
integrals over Feynman propagators, the inverse effective propagators A (~ and 

--1 A(0), v will have formal asymptotic expansions in the form 

(9.1) ~ [A,~(k) + B,~(k) lnm0] (mS)'. 
~Z:0 

We may however recognize from eq. (7.6) that the coupling constant itself admits 
such an asymptotic expansion in the form 

(9.2) 
n=O 
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and eq. (9.2) can in pr inciple  be inverted to 

As a consequence ,  a perfect ly  acceptable  form of the asymptotic  expans ion  of the 
inverse propagators  is 

(9 .4a)  A~I (k) = ~ [A (~' (k) + BR (~ (k)] (too)" 
t / = o  

(9.4b) ,0~ (k) = ~ [A~ ~ (k) + fiB~~ ( too) ' .  
~/ =(I 

The  expans ion  (9.4), in compar i son  with (9.1),  involves no extra  effort, but  it 
shows the great  advantage of express ing final results  in a form that  makes direct  
contac t  with the lattice weak-coupl ing expans ion  of the models,  and allows explici t  
checks  of commutat ivi ty  be tween weak-coupl ing and 1 / N  expansion.  

We obviously aim at a systematic way of genera t ing  the coefficients A,~ and B,.  
We shall discuss he re  a general  t echn ique  that  does not rely upon  any specific 
feature  of the one-loop integrals involved, and in the nex t  sect ion we shall p resen t  
a different  approach  specific to the case discussed in sect. 8 when  an integral 
represen ta t ion  is available. 

91 .  General technique. - The general  t echn ique  is worth a detailed analysis, 
because  it will be very useful also in the evaluation of expecta t ion  values of 
physical  quantit ies.  It will also allow us to show the connec t ion  between 
s h a r p - m o m e n t u m  regular izat ion and lattice formulat ion.  It is there fore  convenient  
for our  purposes  to discuss the case of a one-loop lattice integral with arbi t rary  
propagators  and vertices. The  general  form of the lattice integral is 

f (9.5) ](k; m o a ) =  ~ F ( k ;  moa,  p ) ,  

0 

where  k is the ex te rna l  m o m e n t u m  (or a col lect ion of ex te rna l  momen ta )  and we 
use the notat ion 

(9.6) 

b b b b a 

(2re) '~ - 21r (2tO '~ 2 7r 2re = �9 i =  i = 1  
I I - -  b a - -  b 61 

When compar ing  with the con t i nuum formulat ion,  we must  keep m mind  that 
powers of a have been  inc luded in the defini t ions of F and I in order  to make 
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them dimensionless. Formally we can rewrite eq. (9.5) in the form 

(9.7) I(k; m o a ) =  F(k; moa, p ) +  a a F(k; moa, p a ) -  

0 0 

- -  a~ f ddp (---~)~TF(k; moa, pa),  

0 

where T F  is the Taylor series expansion of the function F in powers of m0 a 
around moa = O. In order to turn eq. (9.7) into a mathematically rigorous 
statement, we must show that, order by order in a, all ultraviolet and infrared 
divergences are explicitly cancelled. Let us therefore introduce the truncated 
Taylor series expansion T j  (including all the powers of m0 up to m~) and notice 
that 

(9 .8 )  

0 

OD 

+ a a F(k; 

0 

d p  
-Z--~dF(k; moa, p) + 

.J (2u) 

I! dap 
= r ( k ;  

n/a 

(3O 

moa, pa) -- a ~ I ddp 7-2%-~_.aTjF(k; moa, pa) =. 
J (2u) 
0 

n/a t 
d p  

moa, p ) -  a a T j F ( k ;  moa, pa + 

0 
a o  

+ a a f  ddp f dap ( ~ )~F(k ;  moa, pa) + a ~ ~ ( 1  - - T j ) F ( k ;  moa, pa) = 

0 ~/a 

f f (-~u)~(1 d p  - - T j ) ( F ( k ;  moa, p ) + a  d d~P ( 1 - - T j ) F ( k ;  moa, p a ) +  

0 n/a 

+ I(k; moa) = I(k; moa) + O(aJ+l). 

Indeed the first contribution to eq. (9.8) is trivially 0 (a  J+ 1), and the same can be 
shown to hold for the second contribution by noticing that 

(9.9) I F(k; moa, p a ) - - - ~  aYFj(k; mo, P), 
J 

LFj(k; ~mo, )~P)=-~JF~(k; mo, p) ;  
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therefore we have 

d~tp 
(9.10) a(~ _1 (-~y~(1 -- T j ) F j ( k ;  m0, P) = O(a ' /+l) .  

Equat ion (9.8) paves the way to two major strategies in the regularization of 
lattice integrals. The first strategy, till now most popular,  stems from the observa- 
tion that  the last term in the 1.h.s. of eq. (9.8) vanishes in dimensional  regulariza- 
tion. One may  therefore adopt the definition 

d~ ddp 
(9.11) I ( k ;  m 0 a  ) = l i r a  F ( k ;  m o a  , p ) + a  d F ( k ;  m o a ,  p . 

d ~ 2  

0 

When expanding in powers of a, the first contr ibution corresponds to infrared- 
divergent massless lattice integrals and the second to ultraviolet-divergent massive 
con t inuum integrals; in dimensional  regularization infrared and ultraviolet poles 
cancel  exactly and we are left with a finite result. However, one may also notice 
that  the last term in the l.h.s, of eq. (9.8) is reminiscent  of the s tructure of 
counter terms in the sha rp -momentum regularization scheme. More precisely, we 
can decompose the expansion T j F  into contributions which are ultraviolet diver- 
gent (relevant),  contr ibutions which are infrared divergent (irrelevant),  and 
contributions which are ultraviolet and infrared divergent (marginal) .  Symbolically 
we may write 

(9.12) T 1 q~(~} T(~R) m{~ �9 - - - - ~ j  q - ~ j  - q - ~ j  . 

We can introduce an arbitrary cut-off M 2 and split the counter te rm T!~ ) into two 
separate integrals. Finally we can express the original integral in terms of two 
separate contributions whose singularities are now independent ly  regularized: 

i d~p a,~ o p  T~wR ) F ( k ;  m o a,  p a )  (9.13) I ( k ;  m o a )  = F ( k ;  m o a ,  p ) -  
J 4~ " 
0 

- a ~ _ dP~ 'T~~ m o a ,  p a  + 
d p  2 

�9 ~ F ( k ;  m o a ,  p a ) -  

0 0 

t d ,  2 ,~  
_ a2 clp T (~gF(k ;  m~,a, p a ) -  a 2 dP~T( j~  m o a ,  p a  . 

d 4~z ' 4re " 
{} M 2 

Equation (9.13) is the starting point for the series expansion in powers of a. 
The first contr ibution in brackets is ultraviolet-regular. The lattice integral and 

the cont inuum integrals are separately infrared-singular,  the infrared divergences 
cancelling out in the sum. In analogy with the s tandard notation for ultraviolet 
regularization (cS eq. (5.1)),  we always assume that  such combinat ions of 
(massless)  separately infrared-divergent integrals stand for, e.g., 



46 M. CAMPOSTRINI and P. ROSSI 

A 2 

. j  ~ latt ( P )  - -  - - ~ - - r  ~ 

0 0 

f d2P ~ dP 2 

0 ~2 

where ~ is the region comprised between the circle of radius A and the square of 

side 2u (assuming A > u G ) .  The integral of the difference is infrared-regular by 
construction. 

The second contribution in brackets is infrared-regular and ultraviolet singula- 
rities are removed according to the prescriptions of the sharp-momentum scheme, 
which means that the marginal (scaling) component of I(k; moa) receives 
a contribution exactly equal to the one obtained in the corresponding continuum 
model: all lattice effects are included in the first term. Moreover, as we shall 
immediately show, by applying eq. (9.13) directly to the gap equation it is possible 
to fix the value of M 2 in such a way that the sharp-momentum coupling constant 
can be identified (for large N )  with the lattice coupling. 

92.  Expansion of the gap equation. - For our purposes it will be sufficient to 
truncate the expansion in powers of a to the second non-trivial order, i.e. J = 2. 
The regularized form of eq. (7.6) is 

1 (9.15) | d2p 1 
- - ~  2-~ 1 + 2 f  j (  2 m ~ a  2 + ~ 4 S i n  2~p .  c o ~ 4 s i n  41 - -  ~ ~ P ~  

0 g # 

oo 

+ a 2 1 - -  T2) 
j 4 g  

0 

and, expanding to O(a2), we obtain 
/r 

- 1 

-- ic2p 
0 

2 a 2  _ m0 + ~ 4 sin2 �89 c,2~,4sin4~ap, 

( ~  - ~ co~)2J 
4- 

+ 
I dp 1 

+ 
j -~-~ ~ + ~  4 ( v ~ + ~ b  - J 
0 

idp211 1 4 a 2 (c~ + ~) ~ p .  
m~ 1 

- j 4 .  [2  2 (p~)~ + 4 (p2)2 

a 2m~(c2 + 1) ~ p q  
1 

J 2 (p2)3 �9 

According to eq. (9.13), we can write 
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(9.17) 1 f dSjo [ 1 

o 

a: m~ ] 
- -  I~C , ,  ^ 4 - . 2 /  

( y  - ~ ~P J J 
+ 

+ 

+ 

+ (p~)~ + 
dp 2 'm,~ dp 2 1 a~m~/'  

0 0 
on 

4~ kp~ 8 p2 
M 2 

The continuum integrals can be explicitly evaluated and the final result is 

__1 ~ d~p 1 ! dp ~ 1 __  _ 
(9.18) 2r (2~r) ~ ~ -- ~ c~"/3 4 4~r + 4~-- In m;" 

) 

. , I i  d~p 1 
- ~P ~'~ ( 2 ~ )  ~ ( b  ~ - .', c.. ~4)~ 

dp ~ 1 f dp 2 
4;r (p~)~ ~ c~ + (~):~ 

H 0 

+ 

+ . . . .  3 c In 5) 
Equation (9.18) deserves some comments: 

A rescaling p---*p/a in the terms originated by T~] R~ must be performed q[ter 
the expansion in powers of a has been accomplished, It may sound arbitrary, 
because we are working with divergent quantities without an intrinsic scale, but it 
is mathematically sound as one may recognize by going back to the proof of 
regularization. 

The effect of a Syraanzik improvement is made apparent by the cancellation of 
the logarithmic dependence on 'm,, in the first irrelevant contribution when we 
choose the value c.~ = -- 

In order to identify sharp momentum and lattice couplings, we must choose 
M~ such that 

(9.19) 

M L 

f d2p  1 f d ] ) 2  1 _,  ~/? - 0  
(27r)= ])= ~c., 4~ /)3 , 

H 0 

implying 
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(9.20) 2 f  4~ m~ 
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1 + 3 C 2 1 n  o + O ( m 4 ) .  
32T~ m ; J  

The  choice  implied by eq. (9.19) will allow us to express  our  results  in a form 
immedia te ly  comparable  to the lattice weak-coupl ing expansion,  because  the 
d i f ference  between the couplings is pure ly  non-per turbat ive,  as shown by 
eq. (9.20).  Any other  choice  would cor respond  to a finite renormal iza t ion  and 
would requi re  a per turbat ive ad jus tment  of f i n  order  to recover s tandard  per turba-  
t ion theory.  M~ and cr are plotted as funct ions  of c~ in fig. 13. Let us not ice  the 
special  values 

(9 .21a)  M~I = 32, M ~ ~" ~ =o L Ic~= - 1/3 = 17.68967299,  

1 
(9.21b) ~ lr - -  0~1]c2= --1/3 ~ -  - -  0.00479767.  

32~' 

150 

100 

50 

0 

-50 
-1.0 -0.5 0.0 0.5 c 2 

Fig. 13. - M~ (solid line) and cr (dashed line) as functions of c~ ( ~  is multiplied by 103). 

93 .  Expans ion  of the propagators. - In pract ice,  when  willing to compu te  the  
expans ion  indicated in eqs. (9.4),  m u c h  work can be saved by the following 
observations.  

The  funct ions  B~ (k) are re la ted in a simple way to the coefficients of the 1/~ 
poles resul t ing from the con t i nuum integrat ion in the represen ta t ion  (9.11).  These  
coefficients are re la ted to essential ly trivial one-loop co n t i n u u m  integrals tha t  can  
all be compu ted  in closed form. There fo re  the funct ions  B,~ (k) can  be expressed  
in t e rms  of e l emen ta ry  funct ions  of f~ and do not  requi re  an integral  represen ta -  
tion. 

Moreover, let us assume that  the integrand in the represen ta t ion  (9.5) of an 
inverse propagator  A -1 be a funct ion  F~(k;  m0, p).  By shifting the integrat ion 
variable, it is possible to symmetr ize  F to F~ ~ (k; too, p),  where  F sym is an even 

1 funct ion  of k ,  with all singularit ies located in p ,  = +_ ~ k,.  Let us now cons ider  
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the function 

(9.22) F~ Cm (k; m o, p) - -  fl B,~ (k) (too)" =-- 
t t  = t) 

_ f  d2p [F~,~,(k; m~,,p)_ 1 (  1 ' ) + ~ 1  ) ~ ] 
(2~) '~L A 2 p+~k" P--:~k 2 ,,=o B" (k) ('m'~)" . 

By construction, according to eq. (9.4), this function is analytic in m o around 
m o = O. Therefore, we immediately obtain the following integral representation of 
A,, (k): 

i ~" d~p d" 
(9.23) A, (k) = ~ J (2~)" d (m.~)" " 

�9 F ~  ~n(k;  re.o, p) -- :p k~ .~ 
+ ~ + ,m~ 

+ ___~ ., B, (k) ( - d ) '  
p -- ~ + m~ ~=0 

The symmetrization procedure ensures us that all the singularities in the inte 
grand are locally cancelled out.. We are still left with singularities regularized by 
counterterms of the form 

cos4/0  
(9.24) q2,. , 

where q and 0 are the polar coordinates in the p-plane with centre _+ ~k. and 
l # 0; these counterterms are implicitly introduced whenever needed, or equiva- 

1 lently polar integration in two small circles around p .  = + ~ k~, is understood as 
performed first. In practice, we shall only be interested in the functions A0 (k) and 
A1 (k), whose integral representations we explicitly quote: 

(9.25a) A,t(k) =j(21r)~ - - 2 \ p + ~ k  ~ + p - } k L ,  -, o(k) , 

f d~P [dFT"(k;  m"' P).,.= ~ 
(9.255) A1 (k) = ~ dm~ + 

1(  i , ~ 1 1 1 1 ;~B (k)J 
+ i v) + 

Hence for our present purposes we shall only have to work out the functions B0 (k) 
and B~ (k). Let us illustrate the procedure by evaluating B0 (~) (k) and B~ ~) (k). Our 
starting point will be the expansion in powers of a of the continuum integral 

O0 

I P , /  ~ ,~ 1 1 - I  
(9.26) + E 4 sin - ap ~, c., ~ 4 sin 4 ap . 

11 p 
Ii 

�9 m ; a - + ~ 4 s i n  2 a p . + k .  - - c . 2 ~ 4 s i n  - a p . + k .  
, , \ 2  " ' 
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where the factor 2 has been included in order to take into account the effects of 
the (excluded) expansion around the second singularity in p = -- k. Since we are 
interested in the expansion to second non-trivial order, we may replace integral 
(9.26) with 

i d~p 1 . (9.27) 2a ~ (2~) ~ ~-d 2 + m~ a 2 

0 

1 . [ 
�9 ~ ( ~ ) ~  + ' - .  

Within the desired approximation, however, 

(9.28) daP P~, Pv 1 dap ~2 6~ 
(2~) ~ ~2 + - ~  ~ ~ (2~) ~ F + ~o  - 

0 0 

sink#+c2sin2k,)]2 t 

(k~)~ ] 

m~ 6 ~'~ i ddp 1 
d (2zc) d >~ + m~" 

0 

Moreover, we are only interested in the pole art, and we can therefore replace 
integral (9.27) with 

1 
2 + mo 

__ 1 ~"  ( C l C O S k .  + c2cos 2k.) 
tt 

(k~)~ 

(2c 1 sin ktL--t-C 2 sin 2k,)~ ] |  

QO 

f (9.29) 2 (2~)d ~2 

0 

1 2 a 2  
k 2 m o  

14owever, 

i d~p 1 
( 2 . )  ~ F + m~ 

0 

is an exact representation of the pole part in the asymptotic expansion of fl, and 
therefore we can read B(o ~) and B~ ~) directly off integral (9.29) and find 

2 
(9.30@ B(o ~)- ~ ,  

o ,) 
'~ 1 - -'~ sin 2 k~ (cl + c2 cos ~ k ~ )  ~ (9.30b) B~ ~ ) = - 2 ~ S i n 2 ~ k " ( c l + 4 c 2 c ~  4 ~  (~2)a 

. (~2)2 . 

An important representation of eq. (9.30b) is 

[ ~  1 2J (9.31) B[~)=B(o~) 0.0. ink2 +~-'~ sin~k"(c' ~4c~c~189 . 

tt 
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The computat ion of BI, ~ and B~ ~ is in no sense conceptual ly  more  involved 
than the computat ion we have just presented.  However, m a n y  more  terms have to 
be taken into account  and a few algebraic tricks exploiting explicitly the fact that 
there  are only two vector components  in two dimensions  have to be employed in 
order  to simplify the result. Let us only quote the final result: 

I (9.32a) B;~  2 ~ (c, + c,.cosZ~k.) -- 2 E k~,(c, + c , , c o s ~ k . )  - 
11 /t 

~2 

�9 ) ] 

= 2 [I (c, + c . , cos - , k . )~ ,  
tt 

(9.32b) [3~o, = BIo ) .ct + 4C-cOOS e ~ J k . ( c j  + c.,eoskt,)"- 
~:.,. + ( ~ )  ~ 

s i n  ~ .,_ ]s ( c  I Jr- c,,~ c o s  ~ [ k v ) l  1 

�9 cj + cecos~ ~k.  - sine 2 k = 

= B { i o ) { ~  (~,,d, ln~e + 2sinZ~kt ,(Cl--4c,ecos2~k, ,  ) 2 
~ +~=,_+ 

II 

1 l ( 1 8c~ sin2 } k , ) }  
-- ~ "' 1 C 1 ~r- 4C,e COS 2 ~ k t l  ~ e  ' 

+ 4  c~ + c,. cos~ ~ k.  

Finally we ment ion  that it is possible to define an asymptotic expansion also 
for the functions Zl(ol, (k) defined in sect,. 7. The form of the expansion is 

I (9.33) flA,o,. (k) = ~. [C.. + riD,,.] (m~)".  
tl=l) 

and it is easy to obtain 

(9.34a) D,,. = c, + c.,cos- 2 k , ,  

* , ', L ., I k (?1 ]~'-' -~4Co 2 /O~' COS~ ~P~,' COS"  

I f  d~p 
(9.34b) C,,,, - 4 (2rr) e /:5 ~ 

(9.34c) DI. = cj +4c.ecos ~ 7~/~:. , 

1 
(9.34d) Ci, = - -4  f de p f ~ + 4 c ' c ~  

C 1 p~ +4C.z p;COS'-' e p~, COS ~ ek 

(,/)e 
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All these results take a part icularly simple form in the case c2 = 0; in this case we 
obtain 

2 
(9.35a) B~ =)(k) -- 

(9.35b) 
( 4 

<~) (k) = ~ ~-~ + ~-~ =B(g ~(k) ~ 0~ln  + ~ -  , 

(9.35c) Be0 ~ (k) = 2,  

4 
(9.354) B~ o) (k) = -- ~ + -~ + --(f~2)2 = B(oe) (k) ~ 0~, 0 u in + 4- + ' 

1 1 
= , = - - - ,  D l u = -  C l u = 0  (9.35e) D0~, 1 Co~ 4 4 '  ' 

and one can easily construct  the representat ions of A0 (k) and A1 (k) by a trivial 
application of eqs. (9.25). We must  observe that  these representat ions are well 
defined and they can be used to compute numer ica l ly  Ao(k) and AI (k); however, 
the integrands are plagued with a very singular behaviour, especially for small k, 
and it is very hard  to perform accurate  numer ica l  integrations. 

I0. - Asymptotic expansions using integral representations. 

The methods  developed in the previous section apply perfectly well to the case 
c2 ---- 0. However, this is not the most convenient  way of performing the asymptotic 
expansion when we possess an integral representat ion like eqs. (8.19). In this case 
we start from the observation that  

1 

(10.1) I(k; moa ) = ~ dxG(f~,, moa, x) .  
0 

Moreover, if we perform a homogeneous  expansion of G in the powers of f~u and 
m0, the x-integrat ion of the result ing coefficients can be performed explicitly. As 
a consequence,  we may  write 

1 1 

(10.2) I(k; moa)=~ dx[1--T?)]V(f~,a,  moa, x )+~  dxTCf)G(fq, a, moa, x) ,  
0 0 

where the unconvent ional  notation f~, a indicates that the parameters  of the Taylor 
expansion are f~u a, not  k ,  a. The first integral is now regular up to O ( a  J), and the 
in tegrand can therefore be expanded in powers of m0. The second integral in turn  
can be per formed analytically and the result, which is a non-analyt ic  funct ion of 
m0, can be expanded in an asymptotic series in the powers of m0. This procedure  
is ra ther  cumbersome,  but  the pay-offs are very high, as we shall see in the 
following. 
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Let us p resen t  the essential  ingredients  of the computa t ion  and sketch the 
derivation of the asymptotic  expans ion  in the case of A (~. Let us define 

', ~,, , ,  q4 4 ( lo .3)  q;  = k ; z ( 1  - ~ ) ,  q~ = Y~ q;  = Y. q . ,  
t l  t t  

,7 ~ 2  . 
and expand  all relevant  quanti t ies  in powers of 'm; and k ,  

,) 

(10 .4a)  a ,  ~ 2 -- q~,, 

1 
(10.4b) ~' v 1 - ~(.~i + q~), 

(10.4c) E ( ~ )  ~ 1 In + 1 
8 32 ' 

1 m ~ + q  e m~q-q ~ m o + q  2 m ~ - - q  ~ 1 q4 
(10.4d)  K ( ( )  ~ - - - I n  - -  In + - -  

2 32 16 32 16 8 q~ + r n o  

The  relevant  integrals are 
I 

f dx 2 ~ + 1 (10 .5a)  ., - ~- 

0 

I 

f q~ + m~ ~ + 1 39 (10.5b) d x l n  - -  - ~ ln  ^ -- 2 - in ~ ,  
32 ~ -  1 m ;  

0 

t 

(10.5c)  d X ( q 2 + m o ) . - ( / ~ e ) e  In ~--1^ + - 2 - - 4  ~ - - ~ +  ' 

(, 

where 

N/  4too 
(lo.6) C -  1 +  ~ 

Then,  starting from eq. (8 .19a) ,  we obtain 

1 

~ ~ - -  d x  ~ 8 4n m .  + qe 1 - -  In 

(} 

q~+mo m~ q~ 
32 4 4 (m~ + q2) J 

1 [  1 ~ + 1  1 2 ~ - - 1  ~ + 1 + 1  1 32 

1 /~4 ( ( 1 - ~ e ) ( 1 + 3 ~  2) ~q-1 3 ~ - 1 " ~  
s 1+ ]j. 
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Therefore by expanding both sides of eq. (10.7) we can introduce the regulator in 
the form 

1 1 

1 I 1 1 k~" 1 m ~ f  [ 1 3 1 1 #4 ;~ 
dx 7~.2 + 7 ~ o  in - - +  2 fl dx 2 q~ + ( 1 0 . 8 ) - ~ - ~ j  2q 2~zk" 32 ~-~ + ~-~ (--~-t 16 4(#2) "~ ~ 

0 0 

1 3 1 #4 #2 1 1 1 k mo 4 1 
+ --2 ~ - - ~ + ~  in ~-~+2 #2 4 4 (~-2){ + ~ -  #2 2 ~- fl" 

As a consequence, the known values of B~ =) and B~ ~) are reproduced, and we find 
the representations 

1 

�9 = -  dx a~)a/e ~ 32 ( a  1 1 -- {3 4q z + ~ In - - ,  
0 

(lo.9b) 

1 

A}~) 1 f = - -  dx 
4zc 

~o a ~E(~o~ + 4~o [ K ( ~ o ) -  2f(~o) 2E(~o)ol" ~ 
(a, ae) a/~ ( ~ - - ~  ~la%L i 7 ~ o  O:-~oYJJ + 

0 
1 if [ 31 1 4] - -  dx + q2 a + 8 

0 

+ - -  2~ (~)- 4# ~ 4(#~)3~1n #~ 8+-a(~7)~ , 

where 

(I0.I0) N/ 4% a~ 
~o == 16 - -  ( a  I - -  a~) 2 

By repeating the analysis for A~ ,  we find that 

1 

_, ~ f  (1-2xy (10.11) A(o ) ~ - -  dx 2 q~-" 
4~ mo + 

0 

�9 l + ~ m ; + - ~ q "  8 ( q 2 + m ~ ) l n - -  

1 [ ln 
2re ~ - 1  

q2 +too 1 q4 j 
2 32 4 mo + q~ 

~ + 1  2 + - -  l n - - ; +  - -2+  #2 (3--2~ ~) ~ ln~ - - i  24 16 m; 

+ 8 ~ "  4~ In ~ _  1 -b-6---- , 
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and  expand ing  both sides of eq. (10.11) we can in t roduce  the  regulator  in the 
form 

I 1 

---- d x  7 , ~  4 - - -  In - -  + 2fi  d x  q2 { qe + (10.12) 2rr ,] 2q ~ 27r 32 ~ 2 (q2)2 16 4 ~Tqqe 
II II 

+ t o o  2 in 9 
2=LV �9 32 ~-' 4 4 ( ~ 2  + m o  4 ~ - - ~ +  

The values of BI, ~ and B~ ~ are r ep roduced  and we obtain the representa t ions  

1 

(10.13a) AI, ~ 4U f - -  d x 
1"[ 

0 

(10.13b) 

(1 -- 2x)~ [ ( i E ( ( ~  ] 
(a ,  az) '~e - Z (~ ,  + 2 ( ~ 1 7 6  -- K( (o ) )  - -  

1 

1 d x -  + - -  in 
2rr 2q ~ 2~ "~' 

0 

I 

= - -  d x  [o + E ( [ o )  - -  2 K ( [ o )  - -  
7r ( a ,  

I 

d x  ~'~ 2 E(~'o) ,, K([o)  + (a 1 az) r''2 (1 -- [~)e 1 - (i; 
fl 

1 

0 

1 I (  1 3 1 fC 4 ) k~ 1 1 1 ]~ * ] 
+27 t  2f~ 2 8 + 2 ( f ~ e )  e l n ~ + e ~ e + 4  4 ( ~ 2 )  e " 

The  con tour  plots of Ali a) and  Ali ~ in the k-plane are drawn in fig. 14. 
We finally p resen t  the resul ts  of the evaluation of the inverse propagators  along 

the pr incipal  diagonal  of the m o m e n t u m  lattice, i.e. when  k 1 = k 2 ~ [. In this case 
direct  manipu la t ions  of eqs. (8.7) lead to 

1 1 1 -- cos ~ 1 
(10.14a)  a'~(1, l ) =  ~ / c o s - l l n  

~ '  16rt sin e 2 1 + c o s  1 / '  

(10.14b) A]~'(I, l) - 1 [ ( .,1 ) 1 1 - - c o s t a l  
64resin 4}el cos e l l _  2 - - c o s - - I  c o s - f i n  J 

- 2 2 1 + cos} ' 
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A(o > 

0 ~r 

A(o) o T/ ;2 
o 

(a) Fig. 14. - Contour plots of A o (k) (a)) and A (o ~ (k) + 2/re (b)). Contour lines are in 
logarithmic scale, separated by a factor x//2. 

1 [ ~  1 - -cos �89  2 ] ,  
(10.14c) A(o ~ (l, l) = -~  In 1 + cos �89 l 

1 [ 1 1 1 - - a o s ~ / 1  
(lO.14d) A ~~ (1, l) 8zcsin 2 � 8 9 1 7 6  2 -21+ coS -211n l + c o s � 8 9  

II. - Evaluation of physical quantities in the scaling region. 

The regularization (9.13) of lattice integrals in the scaling region and the 
asymptotic expansion (9.4) of the effective propagators are the essential ingre- 
dients for the evaluation of the scaling contributions to any physical quantity to 
O ( 1 / N ) ,  involving one-loop integrals over the effective fields propagators. 

Actually there is no real need of evaluating separately every physical quantity: 
whenever two operators have the same (possibly anomalous) dimension, their ratio 
is a pure number  that is scheme-independent,  and therefore it can be computed in 
the simplest available scheme; only one of the two operators, possibly the easier to 
compute, must be evaluated on the lattice in the scaling region. These statements 
obviously rest on the existence of a renormalization group behaviour in the scaling 
regime of the model involved, but  they can be explicitly verified in the 1 / N  
expansion, as we shall see in the following. 

111. Lattice correlation length. - A  prototype dimensionful quantity is the 
inverse correlation length (mass gap), that sets the scale for all quantities having 
canonical dimension. For sufficiently large values of ~, as discussed in sect. 3, it is 
meaningful to extract the mass gap from the asymptotic behaviour of the two-point 
correlation function of the fundamental fields. This asymptotic behaviour is 
determined by the location of the pole of the two-point function, as in the 
continuum case. There is, however, a slight complication due to the absence of 
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rotation invariance outside the scaling region. For the sake of completeness, let us 
discuss this point, that was solved in the O(N) case by Mfiller, Raddatz and 
Ruhl[139] by applying saddle-point techniques to estimate the large-distance 
behaviour of G(ar) (see also Cristofano et al. [140]). 

For the sake of definiteness and simplicity we shall now focus on the case 
ce = 0, where the inverse two-point functions is 

1 
(11.1) G-J (p)  ~ ~02 + 'm~ + N Z (p ) .  

Let us introduce the function # (0), indicating the coefficient of the large-distance 
exponential decay, which is dependent on the polar angle 0 in the (x, y)-plane, 
and define 

(11.2) # (0) = #,.(0) cos 0 + #,j (0) sin 0, 

where #.~. and #~, are functions of 0 such that 

(11.3) G -~ (p,  = i#~) = O. 

Equation (11.3) is not sufficient to determine #~(0), but, guided by the saddle- 
point analysis of ref. [139], we make the large-N Ansatz 

1 0 ( ~ )  
(11.4a) # , =  #o i  -}- N # l i  -1- , 

(11.4b) sinh#o.,. = v o cos0,  sinh #o~j = v o s in0.  

The generalization to ce :/: 0 would consist in the replacement 

1 
(11.5) sinh #0,---+ c~ sinh #0~ + ~ c~ sinh 2#o~. 

We can now solve the equation 

(11.6) b e + rrt~ = 0 

for p~ = "i#~)~ with the Ansatz (11.4) and obtain 

(11.7) = - 1 +  1 )n; (8 + .v , )  \4- + . , U  j , Vo )no 2 + 4 )no -- " 

hence 

(11.8) 

Now replacing eq. (11.4@ in the condition (11.3), we immediately get 

(11.9) - -  2 [ v ( , # l  ,. cosO -1- 1~0#1 q sin0] + Zl (i#o,) = 0, 

#0 (0) = cos 0 arsinh (v 0 cos 0) + sin 0 arsinh (v o sin 0) = )n0 + O ()n~). 
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implying 

(11.10) 

and  

(11.11) 

#,  (0)  -= #~x cos 0 + Ply 
~1 (i#oi) 

sin 0 - -  
2Vo 

_ ( 1 )  
1 go(O) Z1 (igor) + 0 

#2(0) = p~(O) + N v o(0) N~ " 

These results are quite general  and may be useful in detailed studies of lattice 
models outside the scaling region. One may  check that  in the appropriate (scaling) 
limit the dependence  on 0 disappears in Pl (0) as well as in #0- However, in 
practice we may  limit our at tent ion to only two special values of O, corresponding 
to the two ext rema 0 -- 0 (side correlation) and 0 =~rc~ (diagonal correlation).  In 
both cases no special Ansatz is needed in order to find the expression for the mass 
gap: in the first case the lattice symmetry  implies # y ( 0 ) =  0 and therefore 
# ( 0 )  = #x(0) ;  in the second case we have Px(�88 = #y(lrc) =- pa and therefore 

# (�88 = x/~pa. Equation (11.3) reduces in both cases to a single-variable equa- 
tion. It is easy to check that, when  c2 = 0, 

1 
(11.12a) g0 (0) = 2 ars inh - mo,  

2 

(11.12b) #0 ~ = 2x//-2 arsinh 2 x / ~ ;  

p~ (0) and #~ (�88 are plotted as funct ions of f i n  fig. 15. It is also comfort ing to 
check that, in these two specific cases, the result ing definition of the mass gap 
coincides with that  obtained from the so-called wall-wall correlations 

1 
(11.13a) G s ( y - - x )  = L  ~ G(x~, x; Yl, Y), 

Xl, Yl 

(11.13b) G a ( - ~ )  x/2 ~ G(xl, x x s Y l ,  Y Yl) 
L 

Xl, Yl 

1.00 

0.99 

-~o 0.98 

0.97 

0.96 
0.00 0.50 1.00 f 1.50 

2 1 2 Fig. 15. - #2o(0) (solid line) and #o(~r:) (dashed line), normalized to mo. 
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whose effective one-d imens iona l  propagators  in m o m e n t u m  space are 

( l l . 1 4 a )  G~ -I -- G -~ (p., = O, p.~j), 

1 
(11.145) G~;' x ~  2 G-L (P.r Pd, P,j = pd) .  

Since side and diagonal corre la t ions  are the two ex t remal  cases on the lattice, 
rotat ion invariance may be verified simply by checking  that  

(11.15) G~ (x) = G,  (x)  

for all values of x. 
As long as we are in teres ted only in the scaling behaviour,  in order  to minimize 

the effort we can focus on the case 0 ---- 0. We can be fairly general ,  because  in the 
scaling region 

( l l . 1 6 a )  P0 (0)  = m o  + O ( m ~ ) ,  

( 1 1 . 1 6 5 )  ~'0(0) = m0 + O ( m ~ ) ,  

independen t ly  of the choice  of the lattice action. There fore  

(11.17) p2(O) = m~ + N X, ( imo)  + O (m g )  + 0 , 

and we need only to compute  the lattice O ( 1 / N )  cont r ibut ion  to the self-energy. 

112.  Sca l ing  behav iour  (?] the f ree  energy.  - Before attacking the above- 
men t ioned  problem, let us, however, not ice  that, if we believe in s tandard renor-  
malization group arguments ,  we may ext rac t  the scaling behaviour  on the lattice 
directly and with lesser effort f rom the express ion  of the lattice free energy. The  
subtle point  in the evaluation of the lattice free energy has to do with the exis tence  
of a per turbat ive tail that  obscures  the scaling behaviour  of this physical quantity.  
However, this turns  out to be a t ractable  problem, because  the asymptotic  
expans ion  in t roduced  in sect. 9 allows us to isolate and remove unambiguous ly  the 
per turbat ive tail of the free energy. In pract ice,  without  belaboring in this point  
(of. ref. [6] for more  details),  we must  simply t ransla te  eq. (5.2) into the lattice 
language and write, in analogy with the co n t i n u u m  notation,  

1 
(11.18) F ~~'' = N T r l n  ( ~  ~ + m~) -- N T r l n  ~ ~ -- Nflm~ + -~ Tr  In A(~] ( p )  - 

1 1 1 
- -  Tr lnA(~]  (p)I,,g=o + ~ TrlnA(o~u~(P) 2 r 2 - - T r l n A - ~  (P)[.,~=o, 

where  we need to recall  that 

(11.19) A,-01.  (P) = (P) + (p) (p) 
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Hence we only need to evaluate 

--1 --I N , ~ - - 1  --1 
- -  (o) ( P )  + ~ [ I  A ( o ) . ( p )  . (11.21) detA(o)u~(p ) = x A(o)u p2 u 

The mo---~ 0 limits of the relevant expressions are obtained by the replacements 

(11.22a) AS~ (p)--,A(o ~) + flB~ ~) , 

(11.22b) A -1 (o~ ( p )  ~ A (o ~ + / ~ B  ~o ~ , 

(11.22c) fl A ~ ,  ( p) ~ Cou + fl Oou . 

Let us now notice that, according to the rules of the asymptotic expansions, we 
may evaluate 

d~p mo 
(11.23) N Tr In (~2 + m~) -- N Tr In ~2 -- N B m ~  = N (2r0 ~ }~ 

-- Nflm~ + N ~ In 1 +  p2 / - -  p2j + 0 (  m4o) =-47cmo + O(m~o) 

Moreover, if we treat mo and fl as formally independent variables in eqs. (9.4) and 
(9.33), we can introduce partial derivatives via the relationship 

d O dfl O 0 0 
(i].24) dm~-Om=~ +dm~tfl Om~ A&)~ (0) O-fl; 

this allows us to reformulate eq. (i 1.18), obtaining the following representation of 
the scaling lattice free energy to O(1/N):  

N 
(11.25) F (~ca~ - m~o + 

4rt 

oEr ]1 + + ~ m0 Om----~ J ( 2 z )  2 l n a ( ~  (p)  + j ( ~ ) s  l n d e t A ( ~ , ~ ( p )  ,,,S =0 

+ continuum counterterms. 

The continuum counterterms in eq. (11.25) are to be introduced according to the 
usual rules and will generate a contribution akin to the counterterms used in the 
sharp-momentum cut-off evaluation of the free energy. We remind that the 

(11.20) Tr in A - 1 f d~P (o)~v (P)  = ~ in det A (~uv ( p ) .  
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continuum conterparts of the relevant quantities appearing in eq. (11.25) are 

1 ~ + 1  
(11.26a) A(~:r .,~ In + O(a~) ,  

(11.26b) A(o ~ (p)--~ ~ in ~ + 1 1 - -  + O ( a ~ ) ,  
2~ ~ - -  1 ~z 

cl + 4c,~ ~ q; cosa �89 
Y 

1 d2p ~o ~ '̂~ 1 =- 1 + f l ,  
(11.26c) A ( ~  (27/:) 2 el " + c . , E q - ~ c o s ' ~ q ~  

LCo = Co. I , , : o .  

The form of the continuum counterterms is therefore 

(11.27) 1 I d2P, [1 -- T~ ''~')] �9 

~ - -  + i n  l n ~ _  1 + ~  i +  . 

We confirm the observation that, in order to get a better agreement with the 
corresponding continuum result, it is convenient to redefine x by 

(11.28} ~ - 
1 + Co/fi'  

where ~ is to be kept constant along the renormalization group trajectory. The 
redefinition (11.28) is not going to affect eq. (11.25), because x turns out to be 
a perturbative function of fl and is, therefore, not affected by the partial derivative 
with respect to m~. Non-perturbative redefinitions of ~ are not allowed; as we shall 
see, they would spoil the scaling properties of the physical quantities. 

Counterterm (11.27) can be analysed in the light of the results presented in 
sect. 5, and we recognize that it can be rephrased in the form 

(11.29) 
9 

~ [ln4rtfl + (3 -- 2 u ~ ) l n  (4ufl + 27r~ -- 2) + cr (~)]  -- 

- ~ p~Lln ( p ~ / m ~ )  + In ( p 2 / m ~ )  + 2 ~  - 2 ' 
I) 

implying 

(11.30) F ~ca~ = F (sM) + 8F, 
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(11.31) 5F=  1 2 5 I f  d2p lnA(~(p)+f d2p 

f I 1 - -  dP24T~ 4rCp2 In (p2/m~) + 
0 

ln det A (oJ,~ (P) ] l,,o= ~ -- 

3 - 2 ~  ] 
In (p2/m2o) + 2n~ -- 2 J 

and F (su) is given by eq. (5.8) (with ~ replaced by ~). 

11"3. Scaling behaviour of the self-energy. - The O(1/N) contribution to the 
self-energy is obtained by computing the Feynman diagrams drawn in fig. 16. 
Evaluating the diagrams, according to the rules presented in fig. 12, leads to 

f d2k A (~) (k) 
(11.32) Z l ( p ) =  (2u) 2 p + k  2 + m ~ +  

i f  d2k d A - ~ f d 2 k  ~ + ~ A (~) (0) ~ A (~) (k) ~amo (~) (k) + ~ A (o).~ (k) �9 

�9 {(1 + u f ) 5 . ~  V4.(P, k) -- exp [ ~ i  ( k . - - k . ) ]  V3. ( p +  lk,::: k)___2____~V3~ (p + lk, k).} + 
p+k +mo 

1 [ d2k d [A ~ d2q V4"(q'-k)] 
+ ~ A (~) (0) d (2u) 2 ~ A (o),, (k) ~ L (o~,, (k) -- 2 (1 + u f )  5, ,  j ( - ~ 2  ~2 + m~ ] + 

g v  

f d2k ~ d f d2q V4~ (q' k) 
+ ( l + ~ f ) d ( . ) ( 0 )  ~ A(,),~(k)a,~dm--~o (2~) ~ #'~+m~ 

Let us now apply the decomposition of the total derivative with respect to the mass 
into partial derivatives, perform some simplifications, and rearrange the terms in 

t ' l  

i s "(~' 
/ ", + I + 

i I 

' + + I i 
i I 

Fig. 16. - O(1/N) contributions to the self-energy. 
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the form 

(11.33) Z l ( p )  = ( ~ ) ~  A (~) (k) 2 
p + k  + m ~  2 0flA~)~(k) + 

1 dek 0 l n A ( ~ ( k )  + ~ A (k) (~tvY4u(p, k) -- 
+ ~ ~,:=) (0) (2=) ~ 5mo j (2=)2 u~ (o).~ 

] , ; } Va~,(p+~k, k) V3,(P+�89 k) 1 A(o~(k)(~t (k) + 
-- exp i (k ,  -- k~) - - e  ~ 2 

p + k  + m  o 

+ 2A(~) (0) (2~)2 LOm ~ lndetA(e)u~(k) -- ~, A(o)~(k)S.~A~ ~ (k) 5m~ J + /Iv 

+ ~ f l ~ y ' ~ o ~ ( k ) ~  v~.(p, k ) -  @,J;~(k)) . 
#v 

Equations (7.10) imply the following relationship: 

[11{ (11.34) ~ exp - -~ ik .  k.  (~.~ V4. (t), k)-- 

[~ 1 1 } [ 1 
V3.(p+~k, k) Va~(p+~k, k) 1 

--exp i (k , - -k~)  -~2 ~ = e x p  -- ik~ �9 
p + k  +m~ 

[ ) ( ))] p~+mo 1 1 1 
�9 ,, V3~ p+ k, k --  Va~ p +  k, k + V 3 ~  2 " p+k~+~4 ~ ~ io- k, k 

Eliminating terms vanishing under symmetric k-integration, we can perform the 
replacement 

1 V3,(p+~k,  k) V3~(P+�89 k) 
(11.35) (~v V4u (p, k) -- exp i(k~,--k~) - - 2  ~ 

p + k  +m5 

---*W(p, k) t~ '~,~(k)+__+m5 V.a~,(p+~k, k)(~, _ ~  Vap(p+~k,k = k) a,~ (k) , 
p + k  + m o  u 

where 

(11.36) W(p, k) = ~ V4~,(p, k) -- ~ [V3~'(P__a + ~k, k)] ~ 
,) 

~ p + k  + m ~  

In order to evaluate the function Z1 (p)  in the scaling region, we must keep in 
mind that the formalism introduced in sect. 9 allows for a direct expansion of the 
lattice integrals in terms of the ,,external, variables m0 and p, since all the 
non-analiticity is accumulated in the continuum integrals, which in turn have 
already been computed in the sharp-momentum regularization scheme. We now 
realize that, as far as the lattice contribution is concerned, we can make explicit 
use of the following relationship, holding for any regular (analytic) function f :  

0 5 
(11.37) f ( k ;  p, mo) ~ f (k ;  O, O)+p2-g----~f(k; 0, O)+ m~ ~ , , f ( k ;  0, 0). 

op- cm~ 
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In particular, when imposing the on-shell condition p 2 +  m~----0, we find 

2 (11.38) f(k; imo, mo)~--f(k; 0, O ) -  m~ ~p2f(k; 0, O)+ mo ~om~f(k; O, 0), 

and, as a consequence, 

(11.39) 
2 5 

f(k; p, mo) ~--f(k; imo, mo) + (p~ + mo)7-~f(k; O, 0). 
op- 

Applying eq. (11.39) to ~V'l(p) , we come to the conclusion that 

(11.40) ~1 (P, mo) ~ Z~ s~) + 8m~ - (pC + mo ~) 8Z1, 

where Z~ sM) is the value of the self-energy in the sharp-momentum cut-off 
regularization scheme, and 8m~, 8Z~ are the O ( l / N )  lattice contributions to mass 
and wave-function renormalization, and are amenable to finite lattice integrals 
whose infrared regularization is provided by the appropriate continuum counter- 
terms. 

11"4. Lattice contribution to mass renormalization. - The 0 ( l / N )  contribu- 
tion to the mass (for arbitrary values of the coupling constant) can be obtained 
from eqs. (11.11) and (11.33): 

(11.41) 
]A0 

Yo 

-Vo  J(2rc) ~ (~)(k) :k 
d2k [ 

+ j (2~)~  ~ A(o).~(k)~.v(k) W(i~o, k) 

+ u f f  d2k 5~,~[V4~ k) 

1 1 d 1 
- - ~  o + ~(~)(o) ~ o ~ )  (k)] + 

-t- i/~o + m5 

1 d -1 1 + ~ ~ (~) (o) ~ ~ co) (k)~ + 

+ ~ ~) (0) d--~ (/~ ~ .  (k))]} = 

Vo ~ A ( ~ ) ( k )  k + i # o  + m o  2 

#v 

+ 

1 ~ d2k ~ [ln A (~)~ (k) + in det A ( ~  
~zl(~) (o) J (2~) ~ ~m~ (k)] 

+ 

+ 

+ 
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In order to evaluate 5m~, let us first complete the lattice computation of m~ in 
the scaling region from eq. (11.17). From the definition of the asymptotic 
expansion presented in sect. 9 it is easy to check that, under symmetric 
k-integration, the following replacements are allowed: 

(11.42a) 

(11.42b) 

1 1 . 2 r~(e)  
- - . ' 2  - '"~--  [S~'~) ( k )  "~- 7lgoD1 (k)] -~- O(~n 4) = 
k + iPo + mo 2 

1 ~ 1 
- 2 ~fi AG) (k)  + O ( m 4 )  , 

W(it, o, k)--* 2 A(or (k) + O(m4), 

(11.42c) 

We make now the crucial assumption 

0 
% (i o, (k)) + 0 (m4). 

up 

(11 .43)  ~m~ -- 0 ,  

which corresponds to our choice of renormalization group trajectories and defines 
the class of theories we are going to generate in the continuum limit. The 
renormalization group flow trajectories defined by eq. (11.28), consistently with 
eq. (11.43), are plotted in fig. 17 (for c2 = 0). Under such assumption and making 
use of the identity 

(11.44) A(~ (0) = 47cmo + O(m~), 

we can conclude that 

1 (' d2k 
(11.45) X1 (imo) = 4rcm~ x ~ j (2~)25m~[lnA(~(k)+lndetA(o~,~(k)]],,~=o+ 

+ 0 (m 4) + continuum counterterms.  

0.50 

fly 

0.2~ 

~ = 1  

~ =l/z 

0.00 

~=0 .1  p 
= 0.01 

~g lO 

Fig. 17. The renormalization group flow trajectories of the lattice models, as defined by 
eq. (11.28). 
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In order to write down explicitly the continuum counterterms appropriate to 
Z1 (imo), it is convenient to go back to eq. (11.32) and perform the replacements 
indicated in eqs. (11.26), supplemented by the substitutions 

1 1 
(11.46a) - - . 2  * - -  

2 k24 ' k + imo + mo 

(11.46b) W(imo, k)--* 4, 

(11.46c) V4, (imo, k) --~ 1. 

The resulting expression for the continuum counterterms is then 

(11.47) f d2 k 
(2702 [1 -- T~ m~ �9 

in 4 +___A 
4 - 1  

+ 
2~ 

~ + 1  
4 In - -  2 + 2 ~  

4 - - 1  

1 11)]} 
Let us notice that eq. (11.47) was derived from eq. (11.32) without making any 
assumption on the dependence of ~ on ft. 

In the light of the results of sect. 5, eq. (11.47) turns into 

2 

(11.48) m0 [ln47:fl + (3 -- 2 ~ ) I n  (4~fl + 2 ~  -- 2) + cm (70] -- 
4~ M~ 

-- - -  In In (k2/m~) + 2rc~ -- 2 4To -~ (k2/m 2) + 
0 

implying 

(11.49) 
2 = a~2(SM) m, "ol + 5m~, 

where 

(11.50) 5m~ = 4 ~ 5 F  

and a~o2(SM),,o~ is given by eq. (5.22a) (with u replaced by ~). 
In conclusion, we can summarize the results contained in eqs. (11.30) and 

(11.50) into the relationship 

(11.51) F (~r = [N-- c.~(~) + cr(~)]  4-~- + O + O(m~).  

Equation (11.51) is one of the main results of the present section. It shows that, 
performing a proper perturbative redefinition of the parameter ~, it is possible to 
map the lattice theory in the scaling region into the corresponding continuum 
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theory in such a way that the fundamental scaling relationships are preserved. 
Equation (11.51) is identical in form to the corresponding continuum relationship 
(5.29). Let us notice once more that non-perturbative redefinitions of ~ would 
spoil the scaling relationship, because they would change F (scaL) without affecting 
Z 1 (the partial derivative ~u/~mo cancels in eq. (11.41) with the corresponding 

1 2 term coming from ~A(o)~,~/~mo). 
Recalling the explicit form of the asymptotic expansions presented in sect. 9, 

we can now construct the following representation of the 0 ( l / N )  contribution to 
the physical mass gap in the scaling region: 

(11.52) 5'rn~ = 2Tcmo (27r)2 A~) + flB(o~) + (2u) 2 

(0) �9 (Cou + flDou)~.(A~ ~ + fiBi ~ + ~ (Cl~, + flD~u)-~(Ao + flB(o ~ + 

+ [(Co~ + flDo~) (C~2 + flD12) + (Co2 + flDo2) (Cll + flDl~)] ~ C o  " 

u (0) 
�9 (Cou + flDo~,) -~ (Ao + flB(o ~ + ----@Co (Cou + flDo~,) --  

fdk 2[ 1 3-2U  
- in U/m ) + in + - 2 

0 

The integral representation is improper, since the denominators vanish on certain 
curves; the generalized principal-part prescription giving a precise meaning to 
eq. (11.52) will be discussed in subsect. 117 (cf. ref. [6]). 

A rather straightforward consequence of eqs. (11.37) and (11.38) is the 
relationship 

(11.53) 
5 

"~ 2 - - f ( k ;  O, mo) + O(m4o) f(k; imo, mo)=f (k ;  0, m 0 ) -  mo ~p2 

implying that the lattice contribution to Z 1 (imo) and to Z 1 (0) 2 , -- m0221 (0) have 
the same scaling limit. As a consequence we should have obtained the same 

o 2 
expression for 5my if we had computed the lattice counterpart of mR in the 
scaling region. 

We are now ready to apply our knowledge of 5m~ to the problem of finding an 
explicit expression for any physical quantity with known scaling properties, when 
we analyse it on the lattice in the scaling regime. Let us assume Q to be a physical 
quantity with canonical scaling dimension 25Q in mass units (i.e. no anomalous 
dimension), and let us compute its large-N limit and O(1/N) corrections: 

(11.54) [ 1 o(1)] 
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evaluating the O ( 1 / N )  corrections in the SM regularization scheme. Since qo is 
universal and fl4ndependent, we can immediately predict the lattice scaling 
behaviour of Q to be 

(11.55) Q(L) =(mo)  qo + -~ ql (fl) + -~ (~vqo m~ + -~" + 

+ O((m~)a~*2). 

Equation (11.55) realizes the promise of evaluating every physical quantity in the 
scaling regime by means of a single-lattice computation. 

11"5. Lattice contribution to wave-function renormalization. - The discus- 
sion of the wave-function renormalization goes along the same lines. We recall 
from eqs. (11.39) and (11.40) that 

( 1 1 . 5 6 )  8 Z 1  = - -  - -  ZI (P ,  m0) p=0" 
~p2 ,~ =o 

From eq. (11.33) we obtain 

~" d2k ~ 1 ~=o (11.57) - - S Z , = J ( - ~ u ) 2 A ( , ) ( k ) s p 2 ~ 2  + 

+ JI _d2ko(27t): ~ A(~ (k) 5t~ (k) ~ p 2 w ( p ,  k) p=o + 

1 E ] + ~ A(~ Do~,(k)~,~--~_,Dop(k)St~(k) -- 
P 

f d2 k 
- -  ~f  ~ A(o)#v (k) 5uv Dlu (k) + continuum conterterms,  

where we made use of the relationships 

V3u (�89 k, k) 
(11.58a) V4u(0, k) - f~u - Dou(k), 

p=0 
(11.58b) - DI~ 5p2 V4u (P, k) - -- (k) .  

Let us further notice that 

1 2 1 1 
(11.59a) = -B~ ~) (k) + - -  

5 k) p=o 1 (11.59b) W(p,  = -B~ ~ (k) -- - -  
~p2 2 

1 
(~2)2 ~ f~ [Do, (k)] 2 �9 
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We are finally ready to write down the complete explicit expression for 5Z~: 

(11.6o) 5z~= (2~) =4(~),.o- + BB~d~L2 ' + ~  + 

. (o, f ibre))  7~ + ~ (Co. + f iDe.)~2 (Ao + " + ~fl Co (Co. + fiDe.) 

�9 (Co.  + . - o . ~  ~ L ~ "  k. [D~,. (k)l ~ - (~)~ 

#~ (C,,, + fiDe,)Doe + (toe + flDoe)Do, -- ~. (Co. + f i D e . ) # D o ~  -- 
I*v 

+ 

^2 fl + Co 1 k~ 1 ~0~ k~ 

# # 

' } 
2 ~ -[- C 0 [(C01 -~ [JD~ D,,, + (Co2 + fiDe2) Dill -~- 

+ 4u Lln ( k 2 / m ~ )  In (k~ /m~)  + 2rc~ - 2 
II 

and we may verify that 

(11.61) 

-t- 

lira 5Z, = 0. 
fl-*oo 

11"6. CP N-1 and  O(2N) models.  At the borders of the parameter space, 
CP N-~ ( f l , .=0 )  and O(2N)  ( f l ~ = 0 )  models require a separate discussion, 
because of some subtleties related to the order of the limiting procedures in the 
lattice formulation. 

We know that, because of gauge invarianee and confinement, 

( 1 1 . 6 2 )  l im m~ = oo .  

However, the quantity 8m~ stays finite, and this is important because of its 
renormalization group interpretation: it allows us to define a renormalization- 
group-invariant, I /N-expandable  scale in lattice CP N-~ models. When computing 
8m~ for C P  N -  ' models, it is necessary to keep in mind the transversality of the 
vector propagator, due to gauge invariance. As a consequence, one may extract 
directly from eq. (11.41) the correct expression 

(11.63) am; I~,.:o = ,~rn.o ~ j  (2~) ~ LA (o ~) +/~B~# ~ 

k 

M~ 

f d k ~  2 [  1 _ _  
- 4 .  -~ in ( k 2 / . ~ )  

0 

A 7 ~ +/~s~ ~] 

+ 
ln(k2/m~)  -- 2 " 
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Equation (11.63) differs from the ~--~0 limit of eq. (11.52): 

(11.64) lim 5m~ = 
~---*0 

M~ 

f d k 2  2 [  1 
- ~-~ ~ in ( k ~ / ~ )  

0 

~ (Cl/~ "[- ~DI")fr 
+ E (Co, + flDo~,-----~k-~] 

St 

+ In (k2/m~) -- 2 " 

On the other side, when we consider O(2N) models, we find from eq. (11.41) 

(11.65a) 
(2~)  2 Ao (~) + 3B(:  ) 

Id,2,[ 1 
~ in(k2/m~) ~ ' 

0 

and 

(11.65b) 5Z~[~o=0 = f - -  

M~ 

11 fdk21 2u d2k 1 [1 ( ~ ) + ( - ~  4~ ln(k2/m~) 
(2u) 2 A (o ~) + fiB( ~~ [2~ ' + k 2 " 

0 

Equations (11.65) ought to be compared with the ~---~ oo limit of eqs. (11.52) and 
(11.60): 

(11.66a) {J lim 5m~ = 2Umo 2 - -  
~ o o  

d2k A ~) + fiB ~) 
(2u) 2 A(o ~) + flB(o ~) 

M~ 1 ] 
-~u-~ ln(k2/m~) 1 + 

0 

~ d2k Cl~, + flDlr, 
+ J (2=) 2 ~ Co~, + flDot, 

and 

(11.66b) ~limoo 5Z1 = f -  
d2k 1 [1  (~) 1 1 

(2u) 2 A(o =) + flB(o:)L2 ' '  + ~ j  + 
M~ 

f dk e 1 2~ 1 f dek 
+ 4u k 2 ln(k2/m~) + 2 ~ L ) ~ C0~ 

0 

DI~ 

+ flDo." 

We may observe that eqs. (11.63) and (11.65) differ from eqs. (11.64) and 
(11.66), respectively, because of a term depending on C1, and D1,. Therefore this 
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difference would be completely absent in the SM and in all other continuum 
regularization schemes. On the lattice these contributions are non-vanishing; 
however, they are perturbative in 1/fl, and in particular when ~--~ oo they do not 
affect the scaling relationship (11.51), where 

(11.67) lira [c,,(~) - cr(;~)] = 1. 
~ o o  

Therefore in the scaling region they are amenable to a perturbative redefinition of 
the coupling f, i.e. to a different regularization scheme of the same theory. We 
shall come back to this phenomenon in sect. 14, where we shall explicitly discuss 
the fl---* oo limit of the above expressions. 

117. Evaluation of lattice integrals. - The numerical evaluation of eqs. (11.52) 
and (11.60) is a fairly non-trivial task. The general structure of 5m~ and 5Z~ 
is that of a difference between an infrared-singular lattice integral and an 
ultraviolet-cut-off continuum integral, with the same singular infrared behaviour 
as the lattice integral. 

By replacing In (k2/m~) with 4rcfl + In (k2/M'~), it is possible to perform the 
expansion of 5m~ in a power series in the powers o f f =  1/(217). The coefficients 
of this weak-coupling expansion are individually infrared-regular combinations of 
lattice and continuum integrals. It is easy to generate the numerical values of the 
coefficients up to high orders, simply by expanding the integrands and integrating 
term by term. However, the full expressions themselves are not proper integrals, 
reflecting the fact that the series are not Borel-summable. As a consequence, the 
approximation by series expansion will fail for sufficiently large values of f. 

In practice, we found that numerical predictions from series evaluation beco- 
me unstable (with respect to different truncations) at the border of the scaling 
region. We do not mean that perturbative evaluations be intrinsically meaningless; 
we only stress that extrapolation to the intermediate coupling may be dangerous 
and need to be carefully tested against instabilities. In particular, disagreement 
between Monte Carlo results and low orders of perturbation theory cannot be 
automatically interpreted as absence of scaling and /o r  failure of field-theoretical 
predictions. 

In any case, in the models we are discussing an explicit way out of these 
difficulties can be found, since a generalized principal-part prescription allows an 
unambiguous evaluation and resummation of (the scaling part of) the series (cf. 
ref. [6]). Our prescription is expressed as follows: 

1) represent the integrals as sums of individual terms of the form 

(11.68) J (2u) ~ [fl + N(k)]" ' 

2) define complex variable functions 

(11.69) 

oo  =Idz' Id k 
C(z) J z - z' j (2zr) ~ M(k) ~ (z' + N(k ) )  ; 
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3) identify 

f d'zkM(k)(2~) 2 [fl + N(k)]  ~ ( - -  1)'~-1 dn-~ [ !  dfl n-~ 1 '  --- ( n - -  1)-- lim~o t_C(fl + ie) +2 C(fl - ie) (11.70) 

From a numerical  point of view, a direct principal-part integration is possible 
but very unstable, since the line of vanishing denominator of the integrands has to 
be found numerically, and moreover it shrinks rapidly towards zero in the limit 
f--* 0. The solution is to adopt the method described in ref. [6]: the integral is split 
into the two regions k 2 < p2 and k 2 > p2, choosing p such that all the singularities 
are included into the first region�9 The integral over the second region is perfectly 
regular and it is easily computed numerically. In the first region, we expand the 
integrand in a power series in k and integrate analytically term by term, resulting 
in the exponential-integral and related functions. The typical analytic integration 
involved in the above-mentioned procedure has the form 

Y 

xn _(n + l)Sy~+~ gs((n + l)lny ) 
(11.71) dx  (ln x)S+~ s ~  

0 

where 

~-' t! 0~ t! 
(11.72) ~s(z) =exp[-- z]Ei(z)-- t=02 zt+l ~" 2t--s-- zt+ 1 ' 

and Ei is the standard exponential-integral function. Tuning p as a function off,  
the n-th order of this expansion approaches the exact result with an error 
decreasing as fast as exp [-- 4re (n  + 1) fl]. The series expansion is shown numeri- 
cally to approximate extremely well the integrand in the relevant region. 

It is worth noticing that the resummation procedure we have sketched turns 
out to be useful also in the evaluation of the so-called perturbative tails of 
composite operators, i.e. those non-scaling contributions to vacuum expectation 
values resulting from spin waves that must be explicitly subtracted in order to 
derive normal-ordered quantum expectation values [6]. 

We may notice that the ambiguity in lira C (z) is related to the Borel ambiguity 
z--*fl 

in the resummation of the perturbative series observed by David [80, 81]. However, 
�9 - - 2 the coefficients of the asymptotm expansmn in powers of m0 of a physical 

1/N-expandable quantity like the mass gap are real functions, whose expansion in 
powers of the coupling is the standard perturbative series. 

12. - Evaluat ion  of physical  quanti t ies  for neares t -ne ighbour  interact ions .  

As already discussed at the end of sect. 8, the task of performing accurate 
numerical  evaluations of the integrals entering the O(1/N) contributions to 
physical quantities is greatly simplified in the case of nearest-neighbour interac- 
tions c2 = 0, where we possess integral representations of the lattice propagators. 
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Notable simplifications occur in eq. (11.41) in this special case: the exact 
O ( 1 / N )  contribution to the mass is 

(12.1) = + A (o)  3 + 

1 A(~)(0) f d2k _~+A(o] (k ) ]_  1 
+ 8  A, 

�9 ( 4 + m ( ~ ) -  ~ 2  2 + 2 A ( ~ ) ( 0 ) \  dm~ + ' 
k + i#o + mo 

where 

1 
( 1 2 . 2 a )  = 1 - + 4 ' 

(12.2b) x = ~ - -  
4f l - -  1' 

and A(~), A(o ~ can be computed from eqs. (8.19). 
Equation (12.1) can be tested, for sufficiently small fl, against existing 

strong-coupling results. Strong-coupling expansions for the mass gap in 0 (N) and 
CpN-1 models were pioneered in refs. [131, 132, 141, 142], and in particular it was 
recognized that, in the CP N-I case, strong-coupling and large-N limits cannot 
trivially commute: indeed the U(1) gauge invariance is spontaneously broken at 
N =  oc (states in the fundamental representation are deconfined free particles); 
on the other hand, it cannot be broken in strong coupling for any finite value of N. 
A signal for this phenomenon is the non-existence of a regular strong-coupling 
expansion of eq. (12.1) at x = 0. In the O(N)  case, extended strong-coupling 
series for the mass gap (up to 0(fl11)) were obtained by Butera and coworkers in 
ref. [143] and analysed in the large-N limit in ref. [144]. Results up to O(f114) for 
the magnetic susceptibility and related quantities were obtained in refs. [145, 146]. 
Strong-coupling expansion of 0 (N) models with improved action was discussed in 
ref. [147]. 

Equation (12.1) can be further simplified in the large& regime, where one can 
perform a 1/;c expansion of the integral involving the vector field propagator, 
leading to an expression which can be evaluated exactly to 0 ( 1 / ~ ) .  We obtain the 
result 

(12.3) 
., # o { f  d'k [ 1 1 d A ~_~)~ ~k) l  

/~ = - -  ~ A (~) (k) ------~=2 + (0)  + 
vo k + i#o + m2o ~ A(~) am;  A 

1 A(~)(0)  1 1 A(~)(0)  A j ~ +  + 0  
~ + -  1 -  -1 

+ 4  A, ~ A, 

Equation (12.3) is a rather good approximation of eq. (12.1) even for quite small 
values of ,~, as long as we consider not too large values of /8. Equation (12.3) 
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should be compared with the exact O(1/N)  contribution to the mass of the 
0 (2N) model 

(12.4) # ~ = 7 o  (-~u) 2A(~)(k) k ~ 2 +  m~ +~A(~)(0) ~m~ _]J 

When c2 = 0 significant simplifications occur also in the scaling region contri- 
butions obtained in eqs. (11.52) and (11.60). The explicit forms of 8m~ and 8Z, 
are, respectively, 

(f d~k [A~) + flB~ ~) A~~ + flB~~ + f l~/ (4f l - -1) . l  + 
(12.5)  = 2.m  + + ~ + 13B(o ~ + 

fl fdk~2[ 1 3 - - 2 u ~  
+ 4fl---~1 ~-u ~ In (k2/m~) + In (k2/m~) + 2TC~ -- 2 

0 

and 

(12.6) 1 t:~ (~) f 
d2k ~,~,~ + 1/(k2) 2 1 d~k B~ ~ + ~/(4f l - -  1) 

5Z1= ( 2 z 0  2 A(o ~) + flB(o ~) +-2 (2rr) ~ A(o ~ + flB(o ~ + 7~ + 
32 

+ 2 4 f l ~  + . / ~  ln(k2/m~) ln(k2/m2o)+2rcS--2 " 
0 

It is easy to compute the first non-trivial orders in the weak-coupling expansion of 
eqs. (12.5) and (12.6), obtaining 

(12.7) - -- 2 + (c} ~) + c} ~ + ~ ) f +  O(f2) ,  
mo 

and 

(12.8) 5Z, = ~ --2 + c~ ~) + c~ ~ + ~ + f + O ( f  2) , 

where 

d2k [A~ ~) A(o ~)B~ ~) 1 ] 
(12.9a) c~ ~) = 47r j (27r)---~LB(o-- ] B(o~ ) B(o~ ) 2~f~ 2 , 

d2k [A ~~ A (o ~ B~ e) 1 3 1 
(12.9b) c~ ~) =4re j (-~)2L~(~ B(o ~ B(o ~ + 16 2~-f~ i " 
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W e  c a n  n o w  m a k e  u s e  of  a n u m b e r  of  i d e n t i t i e s  h o l d i n g  for regu la ted  lat t ice  
i n t e g r a l s ,  d i s c u s s e d  in A p p e n d i x  F, to obta in  

~z 1 
(12.10a)  c~ ~) - 

8 2~ 
+ 4xG~ ~) ~ 0 0282552 

(12.10b) �9 = - -  - + - -  + 4 x G ~  ~ ~ 1.7120726 
8 2u 

( c f  eqs .  ( F . 3 ) ) .  
E q u a t i o n s  ( 1 2 . 7 )  a n d  ( 1 2 . 8 )  have  a s tra ight forward  r e l a t i o n s h i p  w i t h  the  three -  

l oop  c o m p u t a t i o n  of  t h e  la t t i ce  fl- and  y - f u n c t i o n s .  In p a r t i c u l a r  the  O ( 2 N )  re su l t s  

(12.1 l a )  - - ~  - - 1  + + O ( f Z ) ,  
m 5  

( 1 2 . 1 1 b )  = f x _  + 1 O ( f 2 ) ] ,  
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_ // 6f . . . .  / 

c )  / /  
/ 

, /  
/ . .  . . . . . . . . . .  _ 

/ ( / ~  
~ :  

" "  0.00 0.50 1.00 
oO ]' 

b) / . .  . . . . . . .  . .  

1.50 0.00 0.50 1.00 1.50 
, , , , / , 

/ 8 d) / / 
/ 

64 " "/ " 

0.00 0.50 1.00 1.50 0.00 0.50 1.00 1.50 
f 

Fig. 18. 5m~ as a funct ion off ,  for c2 ---- 0 and 7~ = 0.01 ( a ) ) ,  ~ ---- 0.1 (b) ) ,  7r ---- 1 / u  ( c ) )  
and ~ = 1 ( d ) ) ,  Solid and dashed l ines are the results of eq. (12 .1)  for 0 = 0 and 0 = u /4 ,  
respectively; dot-dashed l ines are the results of eq. (12.5);  dotted l ines are the results of 
a power ser ies  expans ion  of eq. (12 .5 )  to 3rd and 6th order. 
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r e p r o d u c e  the  original  ca lcula t ion  by Falc ioni  a n d  Treves  [148], a l r eady  c o n f i r m e d  
in refs. [116, 149]. 

H ighe r -o rde r  coeff icients  of the  weak -coup l ing  ser ies  can  be  eva lua ted  n u m e r i -  
cal ly with high p rec i s ion ,  and  dif ferent  t r u n c a t i o n s  of  the  ser ies  c a n  be c o m p a r e d ,  
check ing  for  stability. 

We can  also c o m p u t e  n u m e r i c a l l y  to h igh  p r e c i s i o n  the  d i f f e rence  b e t w e e n  the  
exac t  lat t ice r e p r e s e n t a t i o n  (12.1)  of tt~ a n d  its SM c o n t i n u u m  c o u n t e r p a r t  
m~sM as e x p r e s s e d  by eq. (5.24),  in the  reg ion  fl ~< 1.5. 

Final ly  we m a y  evaluate  the  r e p r e s e n t a t i o n  (12 .5)  of the  sca l ing  c o n t r i b u t i o n  
to the  m a s s  gap  5m~, as well as the  r e p r e s e n t a t i o n  (12 .6)  of the  r e n o r m a l i z a t i o n  
func t ion  5Z1. We evaluated the  in tegra ls  in eqs. (12.5)  a n d  (12.6)  u s ing  the  
e x p a n s i o n  in exponen t i a l - in teg ra l  func t ions  desc r ibed  in sect.  l l  a n d  ref. [6]. 

These  d i f fe ren t  evaluat ions  should  all agree  wi th  e a c h  o the r  in the  ve ry  weak-  
coupl ing  doma in ,  w h e r e  t runca t ed  pe r tu rba t ive  ser ies  a re  accu ra t e .  Moreover  the  
d i f fe rence  b e t w e e n  the  last  two d e t e r m i n a t i o n s  of  5m~ is en t i r e ly  due  to sca l ing  
violations; t h e r e f o r e  it c an  be  c o m p a r e d  with  i n d e p e n d e n t  d e t e r m i n a t i o n s  of the  
scal ing region,  s u c h  as the  s tudy  of ro ta t ion  i nva r i ance  p rope r t i e s  of  the  m a s s  gap. 

All the  r e l evan t  n u m e r i c a l  resu l t s  a re  p r e s e n t e d  in figs. 18 a n d  19, w h e r e  5m~ 
and  5Z1, respect ively,  a re  plot ted as func t ions  of  f for  d i f fe ren t  va lues  of  ~. 

In  the case  c2 ---- 0 we can  also p e r f o r m  a 1 / ~  e x p a n s i o n  of eq. (12.5) .  T h e  
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Fig. 19. - 5Z1 as a function off,  for c2 ---- 0 and ~ = 0.01 (a ) ) ,  ~ ---- 0.1 (b)) ,  ~ = 1 /~  (c) )  
and ~ = 1 (d) ) .  Solid lines are the results of eq. (12.6); dotted lines are the results of 
a power series expansion of eq. (12.6) to 3rd and 6th order. 
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resul t  is s imply 

(12.12)  5m~ = 27~m:, 
dek A~ ~) + flB~ ~) d k  2 2 1 - 

In (27z)2 d ~ )  + flB(o~) - ~  -~ (k2/,rn~) 1 + 
0 

2fl ~ [ f l f l  l 1 ]  ( 1 ) }  
+ 4 f l ~  + - - -  + + O . - -  ~z 4 4 f l -  1 4 ~  2 

It is possible to check  di rect ly  the cons i s tency  of eq. (12.12) with the asymptot ic  
expa ns ion  of eq. (12.3) .  As a byproduct ,  one  may  also verify that  the  asymptot ic  
behaviour  of c , , ( ~ )  is cor rec t ly  r ep re sen t ed  by eq. (5.26).  The  co r r e spond ing  
resul t  for the  O ( 2 N )  models  is expressed  by eq. (11 .65a)  and is plotted in fig. 20. 

In the opposi te  limit, the  resul t  for CP N 1 models  as expressed  by eq. (11.63)  
is plot ted in fig. 21. 

0.8 7 

0.7 

- ~  0.6 

%- 
0.5 

0.4 

~ o 5  

j ' ~ 4 '  

3 2 2 

0.3 1 
0.00 0.50 1.00 f 1.50 0.0 

Fig. 20 Fig. 21 

J 
J 

, , , , , , , , , , , , , , , , , , , 

0.2 0.4 0.6 0.8 f 1.0 

Fig. 20. - 5ml as a function off ,  for the O(2N)  model. Solid and dashed lines are the 
results of eq. (12.4) for 0 = 0 and 0 = ~/4, respectively; dot-dashed lines are the results of 
eq. (11.65a); dotted lines are the results of a power series expansion of eq. (11.65a) to 3rd 
and 6th order. 

Fig. 21. - 8m~ as a function o f f ,  for the C P  N - 1  model. The solid line is the result of 
eq. (11.63); dotted lines are the results of a power series expansion of eq. (11.63) to 3rd 
and 6th order. 

13 .  - T o p o l o g i c a l  o p e r a t o r s .  

We a l ready  m e n t i o n e d  at the end  of sect. 5 the special  r~le played by 
topological  p r ope r t i e s  in the  limit ~ ----- 0, co r r e sp o n d in g  to p u re  CP N-1 models  and 
U(1)  gauge invar iance .  The  p rob lem of def ining a sensible  lattice c o u n t e r p a r t  of 
the  topological  cha rge  dens i ty  (5.66)  has  long b een  deba ted  in the l i tera ture .  

The  geome t r i ca l  def in i t ion originally p roposed  by Berg and Lt i scher [150]  
am oun t s  to def in ing  

1 
(13.1)  q'~ = --2~ Im { ln t r (P , , + , +vP , , +uP , )  + lntr(P,~+vP,,+u+~P,~)} , p :/: v,  
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where 

(13.2) Pn.~j ~" -Zn, i Z n , j  " 

q~n has the advantage of generating integer values of the topological charge for any 
given field configuration, and one can prove the absence of a perturbative tail in 
the 1/N expansion [134]. In formulations involving an explicit U(1)  gauge field 
~n,~ = exp [i0n,~], an alternative geometrical definition is obtained by defining 

1 
(13.3) qn ---- ~ ~ ~ (0~,, + 0~+,,~ -- 0~+~,~, -- 0~,~). 

#v 

qn enjoys the same properties of q~n and has the same 1 /N  expansion. 
Unfortunately for finite N geometrical definitions are plagued by the so-called 

,,dislocations,), and therefore one cannot extract the correct  scaling behaviour from 
numerical  data [151, 152]. It is, however, possible to express the topological charge 
in terms of a local operator constructed from the gauge fields. Let us define the 
plaquette operator (e lementary Wilson loop): 

(13.4a) u~,~, v = ~n, tt~nTtt,,v'~nTv, t t~n ,v ,  FL ~ V, 

(13.4b) un = U n ,  12 = U n ,  21 = exp [27:iqn]. 

Taking proper combinations of higher powers of the plaquette operator, it is 
possible to construct  an infinite sequence of local operators 

(13.5) 2~q(k) = ~ ( - - 1 ) ~ + l I k 2 k )  2k im{(u~)~ } 

l=~ 1 - - l  ~ k  k )  ' 

whose formal k--* ~ limit is exactly eq. (13.3). One can then construct  the 
sequence of topological susceptibilities 

The perturbative evaluation of these quantities is obtained by considering that 
qn is linear in the effective Lagrangian field 0.~,., and expanding q(k) in a power 
series in qn. One may easily show that 

(13.7) 2uq(~ k) = 2uqn 
(k!) 2 

(2k + 1)! 
(27cqn)2k+1 + O(q~k+3). 

In standard perturbation theory, using lowest-order momentum space propagators 

1 f ^2 
(13.8) < q(P) q( - -  P) >o = (2u)2 ~ P  , 



THE 1 /N  EXPANSION OF TWO-DIMENSIONAL SPIN MODELS 79 

one  can  prove the  re la t ionship  

(13.9)  ( q ( k ) ( p ) q ( k ) ( _ _ p ) } ~ ( q ( p ) q ( _ _ p ) }  1 - - 2 k !  ~ + 0 

A m or e  re f ined  analysis,  based on the re la t ionship  

(13.10)  ){i <' = lim (qCk) (p )  q(k) ( _ p)  ) 
I) 2 ~ 0 

and  the observa t ion  that  

(13.11)  lim < q(p) q(-- p) }o : O, 
p 2 ~ O  

allows us to prove that,  in the leading order ,  

(13.12)  . (k) 

where  

(k!)  4 (4k + 2)! 
(13.13)  cA--- --~ (2k)! 

( (2k  + 1)!) a 

for large k. Equa t ion  (13.12)  shows that  the  per turbat ive  tail of the topological  
suscept ibi l i ty  involves for high k only very  high powers  of f The  same p rope r ty  
might  easi ly be shown to hold also for o ther  mix ing  coefficients.  However,  the  
c o r r e s p o n d i n g  n u m e r i c a l  weights are growing so fast with k that  the conve rgence  
to the geomet r i ca l  def in i t ion  X, canno t  be uni form,  i.e. the  limit k---+ oo does not  
c o m m u t e  with the  c o n t i n u u m  limit (f---* 0). This p h e n o m e n o n  leads to a pe r tu rba -  
tive exp lana t ion  of the  observed d i sc repancy  be tween  geometr ica l  and local- 
opera to r  def in i t ions  of  the  topological susceptibil i ty,  and shows that,  for f ixed f / N ,  
an opt imal  value  of k should  exist  such  that  the mixing is minimized.  

F r om the  po in t  of view of the 1 /N  expans ion ,  the s i tuat ion is, however,  quite  
different:  for  f ixed f the  per turbat ive  tail is depressed  by a factor  ( l / N )  z~, and  
the re fo re  the  a b s e n c e  of a per turbat ive  tail of the geometr ica l  def ini t ion in the  1/N 
expans ion  is conf i rmed ;  the  d i f fe rence  Z~t k ) -  Zt is ca lculable  o rde r  by o rde r  in 
1/N by genera l iz ing  the t echn iques  descr ibed  in the previous sect ions,  while Zt 
itself is s imply ob ta ined  f rom the latt ice c o u n t e r p a r t  of eq. (5.67):  

1 
(13.14) )~t ---- p:~'-~01im (270- 5 p A(o)(p) , 

where  A(o)(p) is the  full lattice p ropaga tor  of the  field 0 u. As a m a t t e r  of 
i l lustrat ion,  let  us  cons ide r  the first con t r ibu t ion  to the  d i f fe rence  Zf 1) -- ;~t, d rawn 
in fig. 22. A fac tor  of ~2A(o)(p) is associa ted with each  wavy line; as a conse-  
quence ,  the  i n f r a r ed  behav iour  is regular .  
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Fig. 22. - The leading contribution to the difference X~ ~) --Zt- 

14. - Ratio of A parameters and renormalization group functions. 

It is possible to analyse the results presented in sect. 11, and especially 
eq. (11.52), from the point of view of the perturbative renormalization group. Let 
us focus on the contributions to m~ that depend on the specific lattice model 
adopted, i.e. the quantity 6m~ defined by eq. (11.49). 

14"1. Ratio of A parameters. - Let us consider the fl----~ oo limit of eq. (11.52) 
and notice that even in this limit a (~-independent) contribution to 5m~ survives: 

(14.1) lim 6m~ = 2~m~ ( dek ~ -B~a) B}8) 
a-*~ J (2u) 2 ~ ( ~  + B(oO---- ~ 

~-~ Dl~k~ 

Because of the non-commutativity of the limits, we must  consider separately the 
borders of the parameter space. Indeed at ~ = 0, we find 

(14.2) lira 5m~ I#,,=o = 2~m~ j (--~-~)~ Lk~:~ + ~o~ ' 
fl~oo 

When s oo we must face an even more involved situation, because the limits 
s ~ and fl--~ oo do not commute, as one may easily check directly from the 
standard perturbative expansion. From eq. (11.66a) we obtain 

(14.3) lim lim m =2 m  f d2k  D1. 2] 
p ~  ~ ( % - - ~ L ~ ( : - ]  + ~ + ~ - 

Finally when ~ = oo we obtain from eq. (11.65a) 

d2k 2 ] 
(14.4) #-~oolim 5m~l#g=0 = 2um~ (2u)----~kB(0--- ~ + ~ . 

We observe that the difference between different regularizations of the same 
physical models is amenable in this limit to the condition DI~ # 0. 

Let us now come to the physical interpretation of eqs. (14.1), (14.2), (14.3) 
and (14.4). These quantities are obviously related to the ratio of the so-called 
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lattice A parameter  to the continuum (SM) A-parameter in the models at 
hand [153, 154]. To be more precise, and recalling eqs. (9.19) and (9.20), we may 
write the relationship 

5m~ 
(14.5) AsM 1 lira ---T-. " 

AL ~ML 1 + 2 ~ - - , o ~  mo,]  

Actually we can do better than eq. (14.5); we can exploit the fact that the ratio of 
the A parameters  is essentially a one-loop phenomenon and our knowledge of the 
first coefficient of the renormalization group fl-function (N for all 5 ~ oo, N - -  1 
when ~--~oo) to exponentiate eq. (14.5) and obtain the exact relationships 

A sM 
( I4 .6)  -- M~. exp 

AL 

( ~  ~ dZk [Btl ~) B(~~ 
LN 

when 5 = 0 (CP N ' models), 

a SM 
(14.7) -- M L exp 

AL 

d~ k ~B~ ~1 B~ ~ 
+ "  

when ~ r 0 and ~ # oo, and finally 

A SM 
(14.8) -- M~, exp 

AL ~ L ~  + ~-~ + ~ Do,u--Jl 

when ,~---~ oo. Equation (14.8) is to be compared with 

A SM 
(14.9) =Mj ,  exp 

AL ~ i -  j ~ L ~  + ~ , 

which we would obtain by setting fig = 0 from the vein beginning (standard 
0 (2N) models). 

We can now obtain explicit representations of the quantities entering eqs. (14.6), 
(14.7), (14.8) and (14.9). First we notice that 

~2 

, 1 (  lk) ' 
'~ ~ - ~ Y~ sin s ~ k .  c1 + 4c~cos ~ ~ (14.10a) ~ Do~ k ,  , 

# 

+) 1 

Do u 4 cl + c~cos 2~k u 
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Furthermore, using the results presented in sect. 9 we can show that 

(14.11a) B{ =) B~ ~ cl c 2 ~  sin 4 �89 + ~ DI~ 
B(0~) + ~-~0~ ---- ~ ~" a" in E2 -- 2 - ~ -  c,+c2cos21k~ Doi,' 

It 

(14.115) B(o~ + ~2 -- 2 2 69 69~, l n k  2 + ~ Do. f ~  
/ t  

/ l  

We notice that terms proportional to ~ d,  r In ~2 are total derivatives that can be 

integrated exactly for any physicalty~acceptable form of ~2: 

(14.12) f d2k ~ 1 

These terms are not really lattice artifacts: they are related to the ratio AsM/A~, 
where A ~  is the A parameter defined in the dimensional regularization scheme 
with minimal subtraction (notice that in dimensional regularization the integral of 
a total derivative vanishes exactly). Therefore we obtain 

ASM---- e x p [ - -  1 1 (~ ~ oo), (14.13a) A ~  

(14.13b) ASM [ 1 ]  
A ~  -- exp 2 (~;-- 1) (~--* oe), 

Equations (14.13) are crucial in finding the variable change from the SM to the 
MS scheme and verifying the perturbative consistency of the continuum results. 
The ratio of A parameters can now be expressed in the more conventional form 

11 sin 4 ~ k~ + ~-~ 

+ c~ cos 2 ~ k~ y Do~_ 1 

when ~ = 0, 

(14.15) 
A ~  

AL 

= M L exp 
~ ~ d2k f 2clc2 sin 41k~ 

j(2~)2 ~2 ~ c, + c2cos~�89 
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when ~ # 0  and ~ #: oo, 

Awg 
(14.16) -- M L exp 

AL J (2~y 

when ~----~ oo, and 

A~ 
(14.17) - - M L e x p  

AI, (2zc) 2 ~ Dou 

in the pure O ( 2 N )  case. 
When c2 = 0 all integrals can be computed in closed form; we obtain 

(14.18) A ~  x / / ~  exp ~ (CP N-l) 
AL 

(14.19) A ~  x ~  exp (~ # 0) 
AL-- 

AL 4 ( N - -  1) 
( ~  oo), 

(14.21) A~-~ x / / ~  exp 
A~ - 4 ( 9  2 1)- 

(O ( 2 N ) ) .  

Equations (14.14), (14.15), (14.16) and (14.17) have been all explicitly 
verified in standard perturbat ion theory. In particular, the difference between 
eq. (14.14) and eq. (14.15) can be traced to the contribution of the field associated 
to the phase of the last component  of the field ZN, which cannot  be eliminated by 
a gauge transformation when ~ # 0. In turn the difference between eq. (14.16) 
and eq. (14.17) is originated by the unsuppressed contribution of the tadpole 
graphs involving closed loops of vector propagators, shown in fig. 23. Trivial power 
counting arguments  show that no inverse powers of 1 + ~ f  appear in the perturba- 
tive evaluation of these diagrams. 

9 
Fig. 23. - The tadpole graph contributing to the difference between eq. (14.16) and 
eq. (14.17). 
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The agreement between perturbative and 1 /N  evaluation of the ratios of 
A parameters is a strong confirmation of the commutativity of the 1/ri and 1 /N  
expansion with respect to renormalization group properties of the models. Even 
the apparent singularity of the s 0 and s oo limits has no consequences on 
the exchange of the /7---+ oo and N----~ oo limits. Fur ther  confirmations can be 
obtained by the comparison of the perturbative ri-function coefficients with those 
obtained by expanding the resummed 1/N lattice /?-function, which can be easily 
obtained from 8m~. 

14"2. Lattice ri- and yfunctions. - Let us come to the evaluation of the 
O ( l / N )  lattice renormalization group ri-function. We may apply the homogeneous 
renormalization group equations to the expression of the mass gap 

(14.22) M~-~ + fl ( f )  m 2 (M, f )  = 0. 

We can expand r i ( f )  in powers of 1/N in the form 

(14.23) 1 o(,) r i ( f )  -= rio(f) + - ~  r i l ( f )  + - ~  �9 

Our choice of lattice action allows us to use the relationship 

(14.24) 

in eq. (14.22) to obtain 

2 

(14.25) rio ( f )  -- 

Further substitutions in eq. (14.22) lead to 

1 5 m ~  
(14.26) ri, ( f )  = [rio (f)12 

2 0 f m ~  

and, since we know ril in the SM scheme, we immediately obtain 

(14.27) ri~L) ( f )  = ri~SM) Of) + 
TC 27t 0 f \  m,~ ) 

Equation (14.27) admits a natural interpretation. We must  recognize that a change 
in the regularization scheme corresponds to a reparametrization of the model, i.e. 
f '  = f ' ( f ) .  Convariance of the renormalization group equations under  repara- 
metrization implies 
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As a consequence eq. (14.27) implies 

(14.29) f(SM) = f _ _ ~  f l o ( f ) ~  + 0 . 

The improper integral obtained by substituting eq. (11.52) into eq. (14.27) is 
defined according to the prescription (11.70). It is worth noticing that all the 
residues in the complex integration vanish, in contrast  with eq. (11.52) itself. 
Taking the derivative with respect to f - - 1 / ( 2 f l )  in eq. (11.52) is completely 
straightforward and we shall not write down the result in the most general case. 
We shall, however, consider a few interesting special cases. 

For ~7=0 (CP N 1 models) we have 

___f2{1+_1 f ( l +  _ @ ~ ) _  1 [" d~k la~:)R~~I--B~A~ ~ / ~  ~ _ 
(14.30) fl ( .f) = re N ~  1 N J(2re)2 2 (A~#~+fiB}#~) ~ 

1 ( d=k 1A{~ ~ ~ 
N J (2re) 2 2 (A~ ~ + fiBl)~ ~ 

1 f dk24re( 1 
+ N 4re k 2 In e e o (k /m;) 

+ 

For ~ r  and c2 = 0  we have 

= - - - -  1 +  1 +  ( 1 4 . 3 1 )  f l ( f )  re N ~ 1 + f ( ~ -  1 / ~ ) J  

l f dek 1 A  {=)B~,~) -- B{~)A (o ~) i f  dek l(a(0? 
g (2re) 2 2  (A~o ~ + flBV~) 2 N (2re)~ ~ , - 0  

+ 

3 t} 
( l n  ( k e / m o )  - 2 )  e 

+ fl/~ ~~ + ~) " 

1 ~2 
)g 

�9 d~~176 --  n ( ~ 1 7 6  + k (  A(~176 4fl~B?) B}  ~ + 
- ,  1.o \ ( 4 f l  - 1) ~ + (4fl  - 1) ~ (4fl  - 1) 2_ 

3g 

2N (4fl -- 1) 2 + N J 4re ~7 \ i n  2 (s § (ln (k2 /mo)  + 2re~ -- 2)2/ 

For ~--+ oo we have 

~_{ /" a (~)/::? (a) /:2 (~)a (~) 1 1 f 1 dek 1 ~ 1 - - o  --*'1 ~o 
(14.32) f l ( f )  = -- 1 - - ~ + N  2re N J (2re )  z2  (A(o ~)+flB~=)) z 

+ 

M~ 

q- N (2re) 2 2 (Co,, + flDo,,) 'e + N 4re k 2 In e (k2 /mo)  
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Finally, for O(2N)  models we have 

[ 
f 2 1  1 1 f 

- - - -  i - - - - +  1 
(14.33) fl ( f )  = rc N N 2re 

1 f d2k 
N (2~) 2 

1 "t-~O 1 z x O  

2 (A(o ~) + flB(o~)) 2 
-I- 

1 /" dk  2 4To 1 

+ g  k 2 In 2( /mob " 

The evaluation of the lattice renormalization group function 3' follows essen- 
tially the same path. From eq. (5.41) we obtain the relationships 

flo ( f )  f 
(14.34a) 3'0 ( f )  ---- 

f 

(14.34b) 8 fl, ( f )  
3'1 ( f )  = -- fl0 ( f )  ~--Z~ ( f )  -- 

o7 f 

Since we know 71 in the SM scheme, we obtain 

(14.35) ~L) ( f )  = ~  ~SM)(f) __ flO ( f ) [ ~  8Z, + 

~ o  ( f )  1 5m~ 
= 3' ~SM) ( f )  - -  fl0 ( f )  

8f  2 mo 2 

f l o ( f )  1 8 5m~] 

f 2 8-f ~ - J  -- 

flo ( f )  5Zl -- 3'0 ( f )  ~ m2o ] -  

Equation (14.35) in turn  is consistent with 

(14.36) 
8 

3'(L) ( f )  = 3'(SM) (f(SM) ( f ) )  __ fl ( f )  ~Lln r ( f ) ,  
Oy 

where 

1( (1) 
(14.37) ; ( f )  = 1 + 5 Z 1 -  3'0 ( f ) ~  m-~o] + 0 - ~  

is the additional finite field-amplitude renormalization due to the change of 
regularization scheme. We may appreciate the fact that r ( f )  = O (f2) ,  as expec- 
ted. 

15.  - F i n i t e - s i z e  s c a l i n g .  

The study of finite-size effects is quite important,  both from a purely theoreti- 
cal point of view and in the context of controlling systematic deviations from the 
infinite-volume limit in numerical  simulations. Finite-size scaling in the large-N 
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limit has been widely studied for different geometries and space dimensionalities 
by Brezin and collaborators [155, 156]. A finite-volume approach was applied to the 
problem of evalutating the low-lying spectrum in two dimensional spin models by 
Lfischer [157] and extended by Floratos and coworkers [156-160]. The systematic 
analysis of 1 / N  finite-size effects is, however, rather recent [161]. Let us review the 
main results of this analysis. 

Any coordinate-independent physical quantity Q defined in the context of the 
1/N-expandable finite-lattice model will in general depend on four different 
parameters: 

(15.1) ? =  ?(f ,  a, L, N), 

where L ~ is the physical volume in d dimensions and a .,, 1/MIj is the lattice 
spacing. In the infinite-volume limit and in the scaling region (according to the 
discussion presented in sect. 14) all separate dependence o n f a n d  a can be made 
disappear by parametrizing everything in terms of the physical mass gap 
rn 2 (a, f, N),  solution of eq. (14.22). The finite-size-scaling relation stems from tile 
observation that one can reach the infinite-volume limit (L/a--+ oo), while silnul 
taneously keeping a constant finite value of mL. As a consequence 

(15.2) Q(f, a, L, N)  > f(V)(mL, N) .  
Q(f, a, ~ N) f+o 

' m L  = COl]St 

The 1/N expandability in turn implies that, assuming 

(15.3) ? ( f ,  a, L, N ) =  Qo(f, a, L ) + 7 7 Q t ( f ,  a, L ) +  0 

and 

(15.4) o(1) re( f ,  N)  = m o ( f )  + Nm~ ( f )  + ~ , 

we may expand the finite-size functions fCQ) in the form 

(15.5) l f ( Q ) ( m L ) + O ( 1 )  f(V) (mL, N)  = f~o Q) (mL) + N _ I  ~ . 

Substituting eqs. (15.3), (15.4), and (15.5) into eq. (15.2), we obtain 

(15.6a) f~Q)(moL ) = 
Qo(f, a, L)  

Qo(f, a, ~ ) '  

f{~) (tooL) 
(15.6b) f(oQ ) (too L)  

Ql(f,  a, L) 

Qo(f, a, L) 

Q, (f ,  a, ~ )  

Q0(f, a, oo) 

(Trt l~fo (v) (mo L ) 

- ( oL) C7;o7, 7 . 
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Equa t ion  (15.6)  is the mos t  gene ra l  f o r m  of the  i / N - e x p a n d e d  f ini te-size-  
scal ing rela t ion.  In  o rder  to gain  fu r t he r  insight ,  one  m u s t  c o n s i d e r  the  specif ic  
p rope r t i e s  of the  quan t i ty  u n d e r  invest igat ion.  In  any  case,  a bas ic  tool in the  
analysis  is the  knowledge  of the  f in i te-s ize-scal ing p rope r t i e s  of the  f ini te-s ize  m a s s  
p a r a m e t e r  mL def ined  by the  gap equat ion:  

(15.7)  
1 1 1 ~ d2q 1 

whe re  the  s u m  r u n s  over the  m o m e n t u m  la t t ice  modes ,  i.e. q ,  = 0 ,2r t /L,  ..., 
2re (L  -- 1 ) /L .  In the  case  c2 = 0 and  in the  sca l ing  region,  def in ing  ZL = m L L  a n d  
zo = moL,  we could  es tabl ish  the  r e l a t ionsh ip  

[1 1 (15.8)  Zo = z o e x p  --  ~ a ) ( z L )  , 

whe re  z c ~-- 4.163948 and  in the  region ZL --< 2rr the  func t ion  a) m a y  be de f ined  by  

(15 .9a )  ~o(zL) = ~ + 4 ~  ( -  1)~z~'~d~+,, 
Z L  n =  1 

(15.9b) d,~ (27r)2" ,~1 . . . . .  _ o0 (n~ + n~) '~' n > 1. 

(n 1, ~ )  r (0, 0) 

The  func t ion  z0 (zL) is m o n o t o n i c  and  invert ible.  T h e r e f o r e  all s u b s e q u e n t  ca lcu la -  
t ions can  be  p e r f o r m e d  mak ing  use  of the  aux i l i a ry  va r i ab le  ZL, wh ich  s impl i f ies  
m a n y  c o m p u t a t i o n s .  

Wi thout  giving fu r the r  t echn ica l  details,  we m e n t i o n  tha t  f in i te -s ize-sca l ing  
func t ions  were  c o m p u t e d  in the  1 / N  e x p a n s i o n  of m a s s e s  a n d  m a g n e t i c  suscep t i -  
bilities, bo th  in the  p u r e  O ( N )  case  [161] and  in the  p u r e  CP ~v-1 mode l s  [162]. In  
O ( N )  m o d e l s  the  1 / N  e x p a n s i o n  of f ini te-size f u n c t i o n s  is an  a c c u r a t e  de sc r ip t i on  
of f ini te-size func t ions  is an  a c c u r a t e  de sc r ip t i on  of f ini te-s ize  effects  in all 
poss ib le  regimes:  smal l  vo lume  ( m L  << 2re), w h e r e  the  resu l t s  can  also be  c o m p a -  
red, by a sympto t i c  f r eedom,  with those  ob t a ined  f r o m  f in i t e -vo lume w e a k - c o u p l i n g  
p e r t u r b a t i o n  theory[163-165] ;  large v o l u m e  ( m L > > 2 r 0  whe re ,  due  to the  
ex i s t ence  of a phys ica l  mass  gap, one  expe c t s  e x p o n e n t i a l l y  fast  c o n v e r g e n c e  to 
the in f in i te -vo lume l imit [166];  a n d  i n t e r m e d i a t e  vo lume .  

In  CP N-1 m o d e l s  at i n t e r m e d i a t e  v o l u m e  a n d  for  N no t  too large ( N <  100), 
new p h e n o m e n a  occur :  not  every phys ica l  quan t i t y  is e x p a n d a b l e  in a 1 / N  series;  
moreover ,  even  if we l imit  ourse lves  to 1 / N - e x p a n d a b l e  objects ,  we m u s t  observe  
that  the sca le  of f ini te-size effects  is not  set  by the  m a s s  gap, bu t  ins tead ,  s ince  we 
are  in the  p r e s e n c e  of a , ,weak ,, conf in ing  po ten t ia l ,  it d e p e n d s  on  the  ( semi -  
c lass ical )  rad ius  of the  b o u n d  states; the  r ad ius  in t u r n  grows like N I/a and  
the re fo re  does  not  have  an analyt ic  d e p e n d e n c e  on  1 /N ,  a r e su l t  no t  u n e x p e c t e d  
in the  l ight of  the  semi-c lass ica l  resu l t s  on  the  b o u n d - s t a t e  s p e c t r u m  p r e s e n t e d  in 
Append ix  E. 
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Anothe r  subtle  poin t  in the study of finite-size effects in C P  N-1 models  is 
related to the  p roper t i e s  of the  Abelian Wilson loop on finite lattices. We only 
men t ion  h e r e  that,  def ining the Polyakov ratio, co r re spond ing  to the derivative of 
the static po ten t ia l  i n t roduced  in sect. 5, 

(15.10)  z p ( R )  = In 
W ( R -  1, L )  

W(R,  L )  

in the inf in i te -volume limit and in the sealing region one should find the  Abelian 
string t ens ion  

,j 
6rim5 

(15.11) z , , (z )  ~ - 3  G ' ~ t , -  

However,  on finite latt ices,  even in the scaling region, 

Z,,(R,  L, a, .s N )  
(15.12)  lira _ ft~'~ (N, rn, L, R / L )  ~ . f f / ' ~  (m,~ L, R / L )  

and one  ma y  show tha t  

2R 
r'~') (m,, L, R / L )  = 1 -- - -  (15.13) lira J0 

tt~oL--~ co L 

We may  def ine  a func t ion  measur ing  the deviations from the infini te  (pe r iod ic )  
vo lume limit: 

e(":l (mo L, R / L )  
(15.14) Yo-(P~ = Jo 

1 -- 2 R / L  

g~P) in t u r n  can  be shown numer i ca l ly  to en joy  a factor izat ion proper ty:  for large 
m 0 L  and m oR 

(15.15) g ( " •  (mo L, R / L )  ~ 1 + c~ (moL  ) ~ ( R / L ) ,  0 

which  can  be u n d e r s t o o d  in t e rms  of an effective Yukawa in te rac t ion  rep lac ing  the  
Coulomb poten t ia l  of finite lattices. 

If we c o m p a r e  eq. (5.58)  with the def in i t ion (13.14)  of the  topological  
susceptibil i ty,  we recognize  that  the  lat ter  quant i ty  is s tr ict ly re la ted  in CP N-1 
models  to the  Abel ian str ing tension,  i.e. 

a 64n ~ 
(15.16) _~ 1 

2n2Zt 5 N  ~ 

(cf. eq. (5 .72) ) .  The re fo r e ,  as a side effect  of the above analysis,  we are  led to the 
(not  u n e x p e c t e d )  resu l t  tha t  %t should  vanish  on any  finite lattice. However,  s ince  
the in f in i te -vo lume l imit  is r e ached  smoothly,  it should  always be possible to 
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devise an appropriate limiting procedure  to extract  infinite-volume information 
from finite-volume, finite-a measurements .  Effects of topology in finite volumes 
were also studied, for different geometries, in ref. [167]. 

In closing the present  section, it is relevant to observe that finite-size scaling in 
O(N) models has been the subject of studies concern ing  the three-dimensional  
case, where a second-order  phase transition occurs  at a finite value fir of the 
coupling. In ref. [168] finite three-dimensional  lattices were studied in the context  
of the 1/N expansion. The method for treating near-cri t ical  behaviours in three  
dimensions, originally developed in ref. [169] for the infinite-volume limit, is very 
reminiscent  of the asymptotic expansion techniques  employed in the present  
work. 

Another approach to finite-size effects in three-dimensional  O (N)  models near  
criticality was developed by Hasenfratz and Leutwyler employing the techniques  of 
chiral perturbation theory[170].  

16. - H i g h e r  orders  of  the  1/N e x p a n s i o n  o n  t h e  lat t ice .  

We have not seriously addressed the problem of evaluating O ( 1 / N  2) contribu- 
tions in the scaling region. A finite-fl, finite-lattice calculat ion can certainly be 
performed with some technical  troubles in evaluating accurate ly  two-loop lattice 
integrals involving dressed propagators. 

This approach has been put  forward in recent  years by Flyvbierg and collabora- 
tors [171-173], who explicitly studied the case of O ( N )  models. They evaluate the 
two-point function of the O(N) non-linear a-models up to O(1/N2), on finite 
square lattices and for fixed values of N, typically N = 3, 4, in order  to compare  
with existing Monte Carlo simulations. From the two-point funct ion they can 
extract  the numerical  value of such physical quantit ies as the mass gap and the 
magnetic susceptibility. The comparison with high-precision Monte Carlo results 
allows an estimate of the systematic errors involved in the series t runcat ion to 
zeroth, first, and second order. These errors appear  to be uniform and smaller 
than the expected magnitude of the neglected terms. Fu r the r  insight is obtained 
by the use of Fourier-accelerated numerical  evaluation of Feynman  diagrams and 
extrapolations of finite-volume results to infinite volume by phenomenological  
finite-size scaling [174, 175]. 

These improved results lead to agreement  with Monte Carlo data, within the 
expected errors, for N 2 3, and give for N = 3, 4 extrapolated mass gap - A-para- 
meter  ratios consistent with the exact cont inuum results of ref. [112], reported in 
eq. (4.15). 

However a fully analytic approach to higher orders in the 1/N expansion would 
require  extracting the scaling contributions along the lines defined in principle in 
sect. 11. This extract ion in turn  would involve a p roper  t r ea tment  of the regulari- 
zation problem, which may not  be straightforward in the p resence  of higher loops, 
if we want to stick to our favorite SM scheme: we might run  into technical  
problems similar to those involved in generalizing the BPHZ scheme to massless 
theories. In any case, based on the proofs of renormalizabil i ty of the 1/N 
expansion, we believe there  should be no general  obstruct ion to such a calcula- 
tion. 
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17. - A different approach: Schwinger-Dyson equations. 

The approach to large N based on the effective action and effective Feynman 
rules is by no means the only way of generating an expansion that is naturally 
organized in powers of 1/N. Writing down Schwinger-Dyson equations for U(N) 
(O(2N)) invariant correlat ion functions, it is possible to recognize that N occurs 
only polynomially in the coefficients of the equations themselves. It is therefore 
possible to t runcate  the (a priori infinite) set of Schwinger-Dyson equations by 
keeping only terms and equations down to a chosen power of N. When the 
resulting finite set of equations is solved, the solution depends on 1IN through all 
powers, and it is equal to the sum of an infinite subseries of the exact  1/N series. 
It is therefore  at least as accurate as the corresponding t runcated 1/N series; in 
pract ice one can get sensibly higher accuracy, as shown in the original papers by 
Drouffe and Flyvbjerg, explicitly concerned with O(N) models [165, 176, 177]. 

The derivation of the Schwinger-Dyson equations is essentially straightforward 
in the generating functional formalism, and we refer to [177] for all details. We 
just present  in fig. 24 the graphical form of the equations involving the fundamental 
field and the c~-field propagators in the O(2N) model, t runcated to O(1/N2) .  
There  is an ambiguity in the location of the bare and dressed vertices; we fixed it 
by the prescript ion that each e-field propagator should connect  a bare and 
a dressed vertex. 

(-~)-'= ( ~ )  ~ ~ _= G -~ 

. . o . .  
( - 0 " )  -1 =N- {  ~" =~,al- -1 

�9 -.0-=~ ,' + - ~ - -  + N ~  tiC" --iV~,~ 
, 

I 

Fig. 24. - The graphical form of the Schwinger-Dyson equations truncated to O(1/NZ). 
Open circles indicate dressed propagators; full circles indicate dressed vertices. 

We tested our  prescript ion by a very simple and illuminating example, the 
exactly-solvable con t inuum one-dimensional  O(2N)  model. Since the O(]/N) 
t runcat ion  amounts  to identifying the bare and dressed vertex, we may try to solve 
the resulting equations by the Ansatz 

( 1 7 . 1 )  G - '  (p)  = A ( p  2 + m~).  

Simple integrations (per formed for convenience in dimensional  regularization) 
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lead to an explicit solution in the form 

2N--  1 
(17.2a) m -- - -  

2N 
(17.2b) G-1  ( p )  _ _ _  (p2  nu m 2 ) ,  

2N--  1 

( ~_ff ) 2 N  1 2 N -  1. p2 
(17.2c) A -~ (p) = m + 4m 2" 

Actually eqs. (17.2a) and (17.2b) correspond to the exact solution of the 
one-dimensional O(2N) model [178], thus showing the power of the approach: 
albeit truncated to O(1/N) ,  the equations enable us to resum the whole 1/N 
series. 

We must now verify that the O ( 1 / N  2) t runcation does not spoil the result. 
However, because of our prescription, this is simply achieved by the Ansatz 

=--N(2N-:I) 1 
(17.3a) a - l ( p )  m \  2N p2 + 4m 2 V(p ) ,  

(17.3b) ( p ,  p ' )  = V ( p  - p ' ) ,  

ensuring that the value of G -1 (p)  is unchanged,  while by consistency one can 
find 

(17.4) V(p) = ( 1 1 +  
2N p2 + 4m2] 

Equation (17.4) can be verified in the context of the standard 1 / N  expansion. 
Although rather promising, the Schwinger-Dyson approach has till now only be 

applied to the O ( 1 / N )  truncation of the two-dimensional O ( N )  models [177]; by 
comparing their results with high-precision Monte Carlo data for the O (3) and 
0 (4 )  models, the authors find an apparent uniform systematic error of O(1/Na) .  
Higher orders and more general models involve, besides the above-mentioned 
problem of locating the dressed vertices, technical  difficulties related to perform- 
ing the higher-loop integration with the needed accuracy. 

18. - F e r m i o n i c  m o d e l s .  

The next obvious extension of the 1 /N  approach in the study of model field 
theories is considering fermionic degrees of freedom. The natural  counterparts of 
the bosonic models we have discussed are theories with four-Fermi interactions 
and U(N) symmetry, power-counting renormalizable in two dimensions and l /N-  
expandable. These theories are ultraviolet renormalizable order by order in the 
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I / N  e x p a n s i o n  in less than  four d imensions ,  as shown by Rosenste in  and  
coworkers  [179-181] and  by Kikukawa and Yamawaki [182], essential ly because  
the i r  ul traviolet  l imit  has  the  same relevant  opera to r  con ten t  as the inf rared  limit 
of the s u p e r r e n o r m a l i z a b l e  Yukawa model.  These  a rguments  were  fur ther  develo- 
ped  in refs. [183-185], and  the whole subject  is careful ly  reviewed in the in t roduc-  
t ion of ref. [186]. Cri t ical  indices were  comp u ted  by Gracey  to O ( 1 / N  2) [187]. 

A suff ic ient ly  genera l  U(N) - inva r i an t  two-dimensional  c o n t i n u u m  Euc l idean  
Lagrangian de pe nds  on th ree  couplings [188]: 

(18.1)  
1 1 1 

y = _ - - . ; g , ,  

w he re  0 is an  N-plet  of Dirac fermions.  This Lagrangian interpolates  be tween the 
O ( 2 N ) - s y m m e t r i c  Gross-Neveu model  (g~, = g,, = 0) and the SU(N)-s?nnmetric 
chiral  Gross-Neveu model  (g~ = g~, = Ng,.), enjoying a global axial U(1)  invariance.  

Gross-Neveu and  chira l  Gross-Neveu models  possess  factorized S-matr ices  in 
two d imens ions ,  and  o the r  exact  resul ts  can  be obtained,  in full analogy with the i r  
bosonic  pa r tne r s .  T h e  re la ted  l i tera ture  has been  steadily growing in the last 
t w enV years ,  and  we shall  not even try to give r e fe rences  for the c o n t i n u u m  
formula t ion ,  address ing  the  in teres ted  reader  to the  (par t ia l )  bibl iography appear-  
ing in ref. [189]. However,  as a l ready observed for bosonic  models ,  only a m in o r  
effort  was done  in going beyond the leading la rge-N approximat ion ,  both in the 
c o n t i n u u m  and  in the  lat t ice versions of the models .  

Latt ice fo rmula t ions ,  as is well known,  are p lagued by the  supp lemen ta ry  
p rob lem of f e r m i o n  doubl ing.  The  p rob lem is solved in pr inc ip le  in any d imens ion  
by the i n t r o d u c t i o n  of the  Wilson t e rm [190], which,  however,  leads to an una-  
voidable compl i ca t i on  in both  analyt ical  and  n u m e r i c a l  computa t ions .  In the 
p r e s e n t  c o n t e x t  we only  want  to summar ize  the available resul ts  co n ce rn in g  the 
large-N limit  and  the  1 / N  expans ion  of lat t ice Gross-Neveu and the chira l  
Gross-Neveu models ,  and  inc lude  a new resul t  coming  as a ra the r  na tura l  
ex tens ion  of ou r  previous  analysis. 

The  first  lat t ice fo rmula t ions  of the Gross-Neveu models  admit t ing  the co r r ec t  
c o n t i n u u m  l imit  were  p re sen t ed  in ref . [191] ,  and  involved staggered fer- 
mions  [192]; t h e r e f o r e  they  descr ibed  models  with O ( 4 N )  ss~nmetry, N being the 
n u m b e r  of ,naive,, f e rmion i c  componen t s  (cf. also ref. [193]). A lattice fo rmula t ion  
with Wilson f e rmions  of the  chiral  Gross-Neveu model  was in t roduced  and  
d iscussed  in the  l a rge -N limit  in ref. [194] (see  also ref. [195]). The  Gross-Neveu 
model  in the  Wilson fo rmula t ion  was s tudied to O ( l / N )  in the seminal  pape r  by 
David and  H a m b e r  [196], where  the not ion  of an  asymptot ic  expans ion  of the 
effective p ropaga to r  was in t roduced .  In refs. [197, 198] the Symanzik improvemen t  
p rogram was appl ied  to the  large-N Gross-Neveu mode l  with Wilson fermions .  
A systemat ic  analysis  of  the  1 / N  con t r ibu t ions  to the  latt ice Gross-Neveu model  
was finally p e r f o r m e d  in the  staggered vers ion  in ref. [199], and  in the Wilson- 
Symanzik  ve r s ion  in ref. [200]. For  comple teness  we mus t  m en t i o n  that  a latt ice 
fo rmula t ion  of CP x- t  models  coupled  to f e rmions  was d iscussed  in ref. [201], and  
that  the p r o b l e m  of fo rmula t ing  latt ice vers ions  of two-dimens ional  1 /N-expand-  
able s u p e r s y m m e t r i c  mode l s  was addressed  by a few au thors  [134, 202], but  never  
sys temat ica l ly  invest igated.  
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Our new result concerns the possibility of obtaining an integral representat ion 
of the effective propagator A (~ in a staggered version of the Gross-Neveu model, 
defined by the action 

(18.2) 
2 

where ~x is a N-plet of (one-component)  fermionic fields, D~j is the Susskind 
,,differential. operator 

(18.3) 1 1 
D ~  = ~ [6x.y+~ -- 6x, y-~] + ~ ( - -  1) x' [6~,y+~ -- b~,y_~], 

and the fermions are coupled to the Lagrange-multiplier field a by 

1 
(18.4) Zx = : ( a ~  + ax-~ + (r~_~ + (7~_~_i). 

4 

In this case, we can obtain an integral representat ion of the fermionic integral 

(18.5) 
ird { 1 1 } 

A(~) = j ~ t r  i~,P+ �89 + mo i~up--�89 u + mo ---- 

= 2  
f d~ p 

1 1 m0 ~ -- ~ p + ~ku p -- ~ku 
# 

(2-)2 (p~-~2 + . ~ ) ( p -  ~k + mo ~) 

where ~ .  = s inpu , and the mass parameter  m o is momentum-independent .  By 
repeating the arguments of sect. 8, we find that A (~ can be computed in closed 
form along the principal diagonal of the momen tum lattice: 

(18.6) A(~(1, l) 4 1 [m~__--_c_ost 
= ~ l + m ~ \  m ~ + l  + - -  

( 1 / /  ~(1 + mo2) 2' 1 - ~ m  C O S  

4 1  1 ( 1 )  
- - - -  2 g . rc 1 + m o c o s l  1 + m  

More generally, using the standard Feynman parameter  representat ion we obtain 

(18.7) A - '  = 2 (a) 

1 c + ~ b u c ~  

f f  d2q dx  (2TC)2 I ]2 ,  
o 1 +too 2 - ~ u c o s q u  
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Wfl e r e 

l # l _ _ : r ( 1  --:r) ke (18 .8a)  E .  -- ~ , ,  

18.85) ~ ,  _ cos k .  
40,. 

18.8c) c = .m~,-  1 o ~ cos /c u . 
# 

By essential ly trivial algebraic manipula t ion  we are led to the final result  

, ( a : )  = (18.9) A/~ I _ 

l 

o 

I 

(I 

where  

(18.10) 
-- (1 + tn~) ~ - ( a ,  --  Ue)~" 

19. - Conclusions and outlook. 

In our  op in ion  the most  i inportant  conc lus ions  that  can be drawn from our 
results  are s u m m a r i z e d  by the following statements .  

1) Non-trivial as.vmptotically-free two-dimensional  Euc l idean  field theories 
can be cons t ruc ted ,  in the contex t  of the 1 / N  expans ion ,  start ing from a lattice 
lb rmula t ion  and  exhibi t ing explicitly the exis tence  of a scaling region. The 
a c c u r a c y  of our  cons t ruc t ion  is O ( 1 / N ) ,  but there  is no obs t ruc t ion  to higher  
order  extens ions .  

2) In the  scal ing region, results that  are expressible  in t e rms  of adimensio-  
nal ratios of physical  quanti t ies  are "a~.'i'versal, .i.e. they do not  depend  on the 
specific latt ice model  adopted  as long as the physical  pa rame te r s  are kept fixed. 
Moreover, these  results  are unaffec ted  by the pathologies of s t andard  per turba t ion  
theory  and  can  be unambiguous ly  predicted.  

3) Tile w i d t h  of the scaling region, however, necessar i ly  depends  on the 
choice  of a latt ice action. In turn,  it is widely i ndependen t  of the 1 / N  correct ions ,  
s ince these  depend  on the effective propagators  and vertices,  whose  scaling 
proper t ies  are fixed by the  ( l a rge-N)  effective act ion and are mode led  upon the 
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scaling properties of the large-N lattice mass gap (cf. eq. (11.8) and fig. 15). For 
standard nearest-neighbour interactions, scaling within 10 -3 is achieved starting 
from 2f--~ 1.25 (//--~ 0.8), corresponding (for not too small N)  to a correlation 
length 1/(ma) ~-- 27. 

4) ,,There ain't  nothing like asymptotic scaling,~ in the real world (excluding 
very large N).  The asymptotic scaling region is in our language the small-f region, 
where the behaviour of m~/m~ is well approximated by the two-loop perturbative 
renormalization group, i.e. its finite part (in the notation of sect. 5) is very close to 
its value at f =  0. As an example, for the O(N) models (the ,,best case,) at c2 = 0, 
with N as large as 20, the mass gap is approximated by the (two-loop) asymptotic 
formula within 10 -3 for //~> 3.3, i.e. 1/(ma) > 108. 

5) Perturbation theory may however be a good guide to the physics of the 
models, in that it commutes order by order with the 1/N expansion and it leads to 
the same renormalization group functions and asymptotic behaviours. Moreover, 
by summing over a sufficient number  of perturbative terms one may reproduce the 
correct lattice A parameter, renormalization constants and perturbative tails 
throughout the whole scaling region (cf. figg. 18-21). 

As we have shown, the 1/N approach may be successfully extended in many 
different directions. The major limitation we could not, however, bypass is the 
restriction to models where the fields belong to the fundamental  (vector) repre- 
sentation of the symmetry group. The problem of extension to fields in the adjoint 
(matrix) representation, like principal chiral models and gauge theories, has been 
the stumbling block of the 1/N expansion in the last decade. A breakthrough in 
this domain could turn the 1/N expansion from a toy in the theoretical play- 
ground into a major tool in the analysis of realistic physical models of the 
fundamental  interactions. 

We thank M. MAGGIORE, A. PELISSETTO and E. V~CAR~ for critical reading of the 
manuscript.  

APPENDIX A. 

Perturbative results. 

In the literature on perturbative calculations, it is usual to report the results in 
terms of a rescaled renormalized coupling t, following the notation first adopted in 
ref. [14]. All four-loop-order //-functions of non-linear (~-models on symmetric 
spaces can be found in ref. [44]. Here we are only interested in two special cases: 

1) O ( N ) / O ( N - -  1) spaces 

[ 1 
(A.1) / / ( t ) ~ - - e t - - ( N - - 2 ) t  2 l + t + - ~ ( N + 2 )  t2+ 

( 1 N 2  11 1 7 3  ) 1 
+ -- 12 + - - N - - 6  --6 + 2 ( N - 3 ) ~ ( 3 )  t 3 . 
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The result  for O ( N )  models is obtained by setting t = 1/(2rcNfl~,). 

2) U ( N ) / ( U ( N - - 1 )  x U(1))  spaces 

[ ( ~  ) t  2 (~  ~ 13 ) 1 (A.2) ~ ( t ) ~ - - a t - - N t  2 l + 2 t +  N + 2  + N ~ + - N + I  t a . 
2 

The result  for CP N-~ models is obtained by setting t = 1/(2rcNflg). 
The local non-derivative scaling operators can be expressed in terms of 

orthogonal polynomials in the variable a 2 = 5~zl [40] (see also [122]). Their  ano- 
malous d imens ions  were computed  to four-loop order: 

1) O ( N )  models  

The scaling operators are the Gegenbauer polynomials C} >2-j~(~) and 

(A.3) y , ( t ) ~ l ( N + l - - 2 )  t + 4 ( N - - 2 ) t a +  

+ ( N - e )  ---Na +-a + 2  ~(3) 1 - -~Z(N+Z- -2 )  t ~ . 

2) CP ~'- 1 models  

The scaling operators are the Jacobi polynomials p~N a, 01 (2~rz_ 1) and 

(A4). 7 k- (t)  ="~ 

~ - - 2 k ( N + k - - 1 )  t + 3 - N t a + ( N + 6 )  N +  ( 3 ) ( N - - k ( N + k - - 1 ) )  t 4 . 
2 

The a-expansion of the critical exponents  may be extracted from the above 
results by finding the critical point  t* defined by f l ( t * ) =  0 and applying the 
relat ionships 

(A.5a) r/ = -- ~ + y~ ( t*) ,  

1 
(A.5b) v -- 

fl' ( t*) '  

holding for O ( N )  models. 

APPENDIX B. 

Effective propagators in d dimensions. 

The mass-gap equat ion takes the form 

d)  (m~) dJ~-~ F ( 1  --~ 
(B.1)  /~ - (4~)~/~ 
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(B.2) 
f ddp 1 1 

A(~)' ( p )  ---- (2~)d q2 + mo 2 ( p  + q)2 + mo 2 ---- 

1 

F ( 2 - - � 8 9  ~" d x  

- -~d/--~ J[p2x(  1 _ ~ + m~12--d/2 = 
o ( 1 1) 

_ _ F ( 2 - - � 8 9  1 ~ m~) F~2 ~d, 2' 2' -~ 
(47:) d/2 4 p + -- , 

where  F is the hypergeomet r i c  funct ion .  F o r  p----0,  the  inverse  p ropaga to r  
assumes  the  value 

1 d 
(B.3) A(~ (0) -- r ( 2  -- ~ ) (m~)~/~_~. 

Special  values  for  the lowest in teger  d im en s io n s  are  

(B.4a)  d = 0: ~ (P) (p~)2 - -  ~ 2 - -  

(B.4b) d = 1: A (~)~ ( p )  - 

(B.4c)  d ---- 2: 

1 '+i1 - -  + I n  - -  - -  
1 ~ ~ 

2fl 4~ 

-- p2 + 4m~ + (p~ + 4mo2) 2 

1 1 2 f l  

mo p2 + 4mo 2 p2 + 4mo 2 

in-- 

A(~ (p) - - -  In - -  
2~p 2 ~ ~--1 p2 + 4m~ 2~ 

1 p 
--- -- - -  arctg - - ,  (B.4d)  d 3: A (~)~ ( p )  4~zp 2mo 

(B.4e) d = 4: A (~)l ( p )  _ (4~)  2 ~ In ~ _ 1 1 m ~  

~ + 1  
l n - -  

~ + 1  

The  inverse  propaga tor  of the  0-field is 

(B.5) 
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where 

(B.6) f dap 2 2 f dap q ' ( p + q ) - - m ~  
A(o~ (P)  = (2x) a q" + m0 d - -  1 (2x) a [q~ + m~] [(p + q)a + m~] 

1 

= 2  ( t o o ) "  ' ' - d x  = 

(47r) d/2 [p2x(1 -- x) + 
0 

F ( 1 - - � 8 9  .,d.,.,- ( 1 . ,  . '~d~-, ( 1 1 3 ~,~)] 

4p-  -- . 
= 2 ~ U ~  (too) '" l _  + m ; /  F 1 ~d ,  - 

2 ' 2 '  

For p = 0, we have 

(B.7) A ~o~ (0) = 0. 

APPENDIX C. 

C o n t i n u u m  integrals .  

A number  of con t inuum integrals occurring in the evaluation of the constants 
appearing in O ( 1 / N )  results can be computed analytically. A typical dimension- 
less SM-regulated one-loop integral in the 1/N expansion, after angular integra- 
tion has been performed,  takes the form 

(C.1) I reg = 

o 2 2 

- - A  2 d P  ~ 2 = m o F ( p  2, m ~ ) -  T( t~F(p  ~, m o ) -  T ~  2, m , 
4T~ ~TC 

0 M 2 

where T(UV)F are the terms in the series expansion of F in powers of m~ that are 
only ultraviolet-divergent (,perturbative tails,,), while T~ are the terms that are 
both ultraviolet and infrared divergent; zl is the canonical dimension of F. 
F(p  2, rno) may be represented in the form 

(C.2) m -= maof(~), 
\ m ; /  

2 o 
where ~ = x/1 + 4mo/P-. 

It is now convenient  to perform the following changes of integration variable: 
in the first integral we set 

-- 1 dpe m~ 1 dt;  
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in the last two integrals we set 

p2 ( t -  1) 2 
(C.4) u - - - - ,  d p  2 = m~du. 

m~ t 

By observing that  t ---- u + 2 + O(1/u), we obtain the  represen ta t ion  

(C.5) 4 n l  ~g = 

= l i m ~  I d e ( 1  - 1 " ~  ['t+l'~ fduT(UV)~(u) - duT0/~(u  ) 

[ j 0  2j< 

�9 �9 �9 r e g  Now, in order  to parametr lze  exphclt ly the r egu la to r -dependen t  part  of I we 
can split the last  integral into the two regions M2/m~ < u < exp[a ]  and  
exp [a] < u, with a = 1 for integrals involving A (~)~ and  a --- 3 -- 2nu for integrals  
involving A(~) ~. The integrat ion 

(c6) 

exp [a] 

f duT0/~(u  ) 

M 2 / m ~  

is now trivial, and  we are left with the task of evaluat ing 

(C.7) c -- 4 h i  an = 

1 f ( t  + l ~ _  duT(VV)p(u ) _ d u T 0 f ( u )  . 
= ] i m o  �9 dt 1 - - ~  \ t - -  1 /  

1 0 exp [a] 

Exact  analytic results  have been obtained in the  following instances:  

(c.8) 
~ + 1  

f ( ~ )  = l n l n ~ _  1'  

c =  lira dt 1 - -  In l n t - -  d u l n l l n u l - -  - -  = 
A ~ o o  t U 

1 0 e 

oo 1 oo 

= _ fdtlnlnt--fduln,lnul~-~ = - - 2 f d ~ l n l n t  = 

1 0 1 

: 27E ; 
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(c.9) 

1 
1 - -  - -  

f ( ~ )  - -  - -  
l n ~ +  1 '  

4 - 1  

c = l i r a  d t - -  - -  - -  

1 e 

= 2y ~:; 

du } 
u 1 

= - - 2  i d t  
~2 i n  In  t = 

1 

( C . l O )  / ( 0  - 

i 4 ~  

3 + r  2 

~ + 1  ' 

c = l i r a  - -  d t - -  
A ~ a o  

1 

= _ 3 i d t  

1 

w h e r e  c 1 is  g i v e n  b y  eq .  ( 5 . 3 8 ) ;  

( C . 1 1 )  f ( ~ )  _ 

i n - -  

1 

2 i n  - -  
~ + 1 '  

( t -  1) 2 3 1 

t i n  t t 2 --  t + 1 

A } 
fd 3 

+ In  u 
# 

1 m t 2 

l n l n t  = - -  3 (7L, - -  e l )  
( t  s - -  t + 1) 2 

t - -  1 1 d u  1 
c = l i m  ~ I d t  = 

d t  1 d u  1 
= l i r a  - -  = 

1 + ~  0 

= 0 .  

APPENDIX D. 

E f f e c t i v e  v e r t i c e s  in t h e  c o n t i n u u m .  

T h e  e f f e c t i v e  v e r t i c e s  o f  t h e  1 / N  e x p a n s i o n  a r e  n o t h i n g  b u t  o n e - l o o p  i n t e g r a l s  
o v e r  t h e  f u n d a m e n t a l  f i e l d  p r o p a g a t o r s  w i t h  a p p r o p r i a t e  c o u p l i n g s  to  t h e  e x t e r n a l  
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lines. The problem of evaluating the most general cont inuum one-loop integral in 
two dimensions is solved in principle in terms of e lementary functions [203-205]. 
It is however convenient to derive explicit expressions for those special kinematic 
configurations entering the actual computations we would like to perform [114]. 

One basic ingredient is the three-point scalar vertex 

f d2q 1 1 1 
2 2 7 (D.1) Vs(p~, P2) -- (2u)e q2 + m2o (q + pO2 + mo (q + p2)2 + m ~ 

a symmetric function of Pl, P2 and p~--P2-  Two-dimensional identities allow 
a reduction of the integrand to a combination of terms involving only two 
fundamental  field propagators. The integration is then straightforward, and the 
result is 

(D.2) 

where 

(D.3) 

V3 (p , ,  P2) -- D - '  (Pl,  P2) [P~ (P2 " (P2 -- p , ) ) A  (~ (Pl )  -[- 

+ p2 ( P l  " (PI  - -  P2) )  A(~) 1 (P2)  + ( P l  - -  P2) 2 ( P l  " P2) A(~) 1 ( P I  --  P 2 ) ] ,  

D(p~, P2) = PT P~ (Pl  - -  P2) 2 -t- 4m0 [p21 p~ -- (p~ �9 p2)e]. 

Let us now consider the four-point vertices: the exceptional  configurations we 
are interested in are the cases when the external momenta  are equal two by two. 
Let us define 

f d2q 1 1 1 
(D.4) V4 (a) (Pl ,  P2) -- (2~)2 [q2 + m0212 ( q  + pl)2 + m~ ( q  + p2) 2 + m ~  

Again by applying algebraic identities we are led to an explicitly integrable 
expression. The final result is 

(D.5) Y(a)(pl, P2) -~D-I (PD P2)[(P~--(P--I[P--~20))P~(A(-~(P,) + A(~ (0))  + 
p~ + 4m8 

+ (p21 -- (Pl "P2))P~(A(~ ~ (P2) + A ~  ( 0 ) ) J  ~ + 
p~ + 4m~ 

-F D - 2  ( P l ,  P 2 )  { [ ( P l  - -  P 2 )  2 ( P l  " P 2 )  -~- p 2  p 2  _ ( P I "  P 2 )  2] " 

�9 [(P~ -- (P~ "P2))P~ZI(-~ (Pl) + (P~ -- (P, "P2))P~A(-~ (P2)] + 

+ [(P,  -- P2) 2 (P ,  " P2)] 2 A(~) 1 (Pl  -- P2)} -- 
2 2 9 

-- D-2  (p , ,  P2) [PlP2 -- (P, " P2) 2] {(P~ + 4m8) ( ( P l  " P2) -- p2) _ A(~)I ( P 0  + 

+ (P~ + 4m0 ~) ((P~ "P2) -- P~) A(~) ~ (Pe) + 

+ [(Pl -- P2) 2 + 4m~] (P l  - -  P2)2A(~ (P~ -- P2)}- 

We must  also evaluate 

(D.6) V4 (~) (P , ,  P2) -- 

------ f d2q 
1 1 1 1 

9 9 2" (2u)2 q 2 + m o  ( q + p i )  2 + m 0 2 ( q + p 2 )  2 + m 8  ( q + P , + P 2 )  e + m 0  
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One can show that the result is expressible in the form 

1 
(D.7) V~ ~) (191, P2) -- [173 (Pl,  P2) -- Va (/91, -- P2)]. 

(Pl "P2) 

In order to compute the correlation function of the composite operator P~j(x), 
we also need the mixed four-point scalar-vector vertices in exceptional momentum 
configurations. We quote here the definitions: 

Y (~ (p, k) = ~ d2q 1 (2%, + k~,) (2q~ + k~) 
(D.8a) 

--,~ j (2~)2 (q2 + ,too)2 [(q + p)e + m~] [(q + k) 2 + m~]' 

(D.8b) V (v) (p,  k) = --,t lY 

f d"q 1 2q.  + k .  1 2qv + 2p~ + k, 
9 ,) 9 o �9 

(2u)2 q 2 + m ;  ( q + k )  2 + m ; ( q + p ) 2 + m o  ( q + p + k )  ~ + m ;  

Actually we only need the combination of vertices appearing in fig. 7 and this 
can be shown to be a transverse tensor. Therefore we can limit ourselves to 
computing 

(D.9a) (~,,, k~7~-) V(~') ( r~ k) .~ ..., 

= _ @2 + 4too) v(~~ ( --4 (P, k) + 2V:3(p, k) + 1 k') ; J  p2 + p~ / + 4mo 

p~ / J  k e(p2 + 4 t o o  2) ~iA~) ( p - - k )  

and 

(D.9b) ~ v  k2 ] ~v(p, k) = - - @ 2 + 2 p 2 + 4 m o )  V4 (b~(p, k ) - -  

2 1 1 
keA(-=~ (p)  + ~A(-~ ( p - -  k) + ~A(-~ (p  + k) + 2V:3(p, k) + 2V:~(p, -- k) .  

A P P E N D I X  E .  

The bound-state equation in the large-N limit. 

As discussed in sect. 5, we must  solve the following eigenvalue Schr6dinger 
equation: 

d2# 6= 
(E.1) -- - -  + - -  A (x) (1 -- exp [-- xp] ) g, = e~ 

dp 2 N 

where p = moR and x =  mo/m o. The resulting bound-state masses will be 
mB = too(2 + ~). 
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It  is c o n v e n i e n t  to in t roduce  new , ,natural, ,  var iables :  a r e sca l ed  coo rd ina t e  
y = x p ,  a , ,weak,,  coupl ing  

(E.2)  g = I - - x A ( x ) l  ~---~--~/--/ 
\ N  ] ~ o~ \ N ]  ' 

and  a r e sca l ed  ene rgy  e igenvalue  tl = ~ /g2 .  Equa t i on  (E .1)  now t u r n s  into 

(E.3)  
d2 , 
dy 2 

- - - - + t  3 ( 1 - e x p [ - y ] ) ~ = t l t 2 ~ ,  

w h e r e  t ---- g / x  = g m o / m  o. 
T h e  gene ra l  ( u n n o r m a l i z e d )  solu t ion  of eq. (E.3)  is a Besse l  func t ion :  

(E.4)  ~h, ( t ,  y )  = J2t,/~_~ (2t3/2 e x p  [ - -  y / 2 ] ) ,  

and  the  e igenvalue  condi t ion  s imply  a m o u n t s  to 

(E.5a)  J' (2t 3/2) = 0 2t t,/7:-~- ~ 

(E.5b)  J2t t4r-:-~-~ (2t3/2) = 0 

( even-pa r i ty  l eve l s ) ,  

(odd-pa r i ty  levels) .  

More specif ical ly,  deno t ing  by  j r  ' k the  k-th zero of Jv ( z )  a n d  byj'~.k the  k-th zero of 
J'~ ( z ) ,  the  n - th  ene rgy  level t/~ is d e t e r m i n e d  by  solving 

" = 2 t  3/2 (odd  n ) ,  (E .6a )  32tt~--~,  (n+ 1)/2 

" = 2 t  3/2 (even  n) .  (E.6b)  22~-/t - 7., ../2 

The  r e sca l ed  energ ies  tln a re  p lo t ted  as func t ions  of  t in fig. 25. T h e  ene rgy  
e igenvalues  ~, t hemse lves  and  the i r  d e p e n d e n c e  on  the  m a s s  p a r a m e t e r s  can  be  
easi ly  der ived f r o m  t /~( t ) .  

0 1 2 3 4 t 5 

Fig. 25. - The rescaled energy levels t/,, as a functions of t (solid lines). The dashed line 
corresponds to t / =  t, where the excited levels disappear. 
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This  k ind  of analys is  is especia l ly  sui table  for d i scuss ing  the  large-t  behaviour ,  
c o r r e s p o n d i n g  to the  condi t ion  

(E.7)  m o  << gin0 ~ m0 .  

F r o m  the a sympto t i c  f o r m u l a  for j'~.~ at large o rde r  11206] 

(E.8)  3L1 1 1 + 0%1-2k/a 
k = l  

one  obta ins  an  e x p a n s i o n  in the fo rm 

co 

(E.9)  ~/, = ~ ?k t -~ ,  
k = 0  

w h e r e  Y0 ~ 1.01879297.  S imi lar  expans ions  can  be  der ived for h igher  ene rgy  
levels. As long as t >> 1 these  are  good descr ip t ions  of the  mass  spec t rum,  and  in 
pa r t i cu l a r  w h e n  t---+ oo they  r e p r o d u c e  known  resul ts  for the b o u n d  states of the  
C P  N -  ~ models .  In pass ing ,  we not ice  tha t  the  condi t ion  (E.7)  can  be r e p h r a s e d  in 
the  fo rm 

(E.10)  m o ( R ) B  << 1 , 

w h e r e  ( R  } ,  is the  semic l a s s i ca l  bound-s ta t e  radius.  Equa t i on  (E. IO)  is an  obvious 
cons i s t ency  cond i t ion  for the  calculat ions.  

E q u a t i o n s  (E .5)  ind ica te  that ,  for suff icient ly smal l  va lues  of t, h igher  b o u n d  
s ta tes  m a y  d i s a p p e a r  f r o m  the  spec t rum.  More prec ise ly ,  def in ing t,, by the  
cond i t ion  

"' - -  2 t  3/e (odd n)  ( E . 1 1 a )  do.(, ,+t)/~ - -  _ v , ,  , 

= 9.t a/'2 (even  n )  (E. 11 b) Jo. ,,/~ - v ,, , 

t he  c o r r i s p o n d i n g  s ta te  sat isfying ~,, = t,,, the  n-th level d i sappea r s  for all t < t,,. In 
pa r t i cu la r ,  w h e n  t < t.2-----1.130756402 all exci ted  b o u n d  s tates  d isappear .  This  
p h e n o m e n o n  is i l lus t ra ted  in fig. 25. 

We m a y  a p p r e c i a t e  that ,  as long as m o ~ g m o ,  one  m a y  show tha t  the mass  of 
the  f u n d a m e n t a l  pa r t i c l e  is well a p p r o x i m a t e d  by 

1 1 6nm~ 
(E.12)  "m~, = TY]~ 0 - { -  ~'1 ( - -  m o )  ~ m o  + N m o 

imply ing  

(E .13)  m~, 1 - 1 + - ~ g e t .  
TO, o 

The  t r e sho ld  cond i t i on  for  the  n- th  b o u n d  state in t u r n  has  the fo rm 

Tr/,B (,) 
(E.14) 

"IlL 0 

2 ') 
- -  2 + g ~l,, = 2 + g ' t .  , 
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and  the re fo re  it amoun t s  to the condi t ion  

(E.15) mB(n) (t,) = 2mr (tn) , 
as one  m a y  e xpec t  on  physical  grounds.  

Finally, the  t h r e sho ld  condi t ion  for the  first b o u n d  state  is s imply t = 0, wh ich  
cor responds  to g----0, and f rom eqs. (E.2)  and  (5 .63)  this impl ies  m o = 2mo, 
a resul t  known by i n d e p e n d e n t  a rguments .  

A P P E N D I X  F .  

Lattice integrals. 

We know f rom genera l  t heo rems  that  the  pe r tu rba t ive  expec ta t ion  values  of 
quant i t ies  invar ian t  u n d e r  the  full symmet ry  g roups  of the  models  mus t  be  
infrared-fini te .  T h e r e f o r e  in pr inc ip le  it mus t  be  poss ible  to r e p r e s e n t  f ini te lat t ice 
expec ta t ion  values  in t e rms  of latt ice integrals  only. However  our  regu la r iza t ion  
t e chn ique  has  led to the  in t roduc t ion  of c o n t i n u u m  co u n t e r t e rm s .  T h e r e  m u s t  
the re fo re  exis t  ( inf in i te ly  many)  s imple ident i t ies  c o n n e c t i n g  latt ice in tegrals  an d  
the i r  c o n t i n u u m  counte rpar t s .  

We have found  all the identi t ies tha t  might  be  re levant  in a th ree - loop  
per turbat ive  computa t ion  of latt ice r eno rma l i za t ion  group func t ions  (w h en  
c2 = 0): 

32 

f ; k2 d2k (o~) dk  2 1__!__ In - -  = 0 
( F . l a )  (~u)2A ( k ) -  4TO 2~zk 2 32 ' 

0 

32 

( F . l b )  

( F . l c )  

fd2k f d k 2 1 ( k  2 ) 1 
k 2 A ~ ) ( k ) +  ~ ~ In ~ 1 ---- --47c2, 

0 

32 

f f ( k 2 )  1 d2k A~~ dk  2 1 In 2 ---- -- 
2 '  

0 

32 

( F . l d )  j (2702 A}~ -- In + 1 -- -- 4~ ~-~ ~ -- 4z: 2" 
0 

At the same o rde r  of approximat ion ,  a n u m b e r  of in t r ins ica l ly  f inite lat t ice 
integrals mus t  be  computed .  When  c2----0, some integrals  can  be  evaluated  
analytically: 

f d2k 3 (F.2D) ~ d (0 ~ (k )  ---- -- 4" 

f d2k (o~) 1 
(F .2a)  ~ f~2d (k )  ---- -- 4 '  



THE I/N EXPANSION OF TWO DIMENSIONAL SPIN MODELS 107 

Howcver ,  s o m e  c o m p u t a t i o n s  can  only be, to the bes t  of our  knowledge,  p e r f o r m e d  
n u m e r i c a l l y  [116, 148]: 

1 f d~k ]~4 
( F . 3 a )  G~)  - 4 (2T0 ~ f~ A ~) (k )  ~ 0 .04616363,  

(F.3b) G~O) = _ 1 f d'2k ~4 1 
4 ( 2 ~ )  ~ (~)~ A ~o ~ (k)  = G ?  ~ + 1~" 
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