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1. — Introduction.

A better qualitative and quantitative understanding of quantum field theories
requires an improvement of the analytical and numerical methods of approxima-
tion. Lattice field theories are a natural ground of application of large-scale
numerical techniques. More efficient algorithms and more powerful computing
machines lead to an ever increasing amount of numerical results. These results
are, however, affected by two major limitations:

1) the quality of the information grows as the logarithm (or, at best, as
a small power) of the numerical effort;

2) the lack of control on the systematic errors possibly induced by some of
the numerical techniques is often tantalizing.

Both limitations are intrinsic to the field-theoretical nature of the problem
addressed: off-critical systems, and even some bulk properties of critical systems,
can usually be studied with great numerical precision as well as with sensible
analytical methods. Systems at criticality, and the extraction of their scaling
properties, however, constitute a much more difficult challenge.

In view of the above-mentioned limitations, the parallel development of more
powerful analytical techniques, even with a limited domain of applicability, is
certainly very welcome. On one side it allows the comparison between numerical
and analytical results in a controlled environment, and therefore it leads to a check
of applicability for those techniques and methods whose reliability cannot be taken
for granted a priori. On the other side it may improve our understanding of those
properties that cannot be directly tested with present-day numerical methods and
may strengthen some of the theoretical hypotheses that must unavoidably be used
in the field-theoretical interpretation of numerical data. One can easily understand
the need for such theoretical pieces of evidence when one realizes that, notwith-
standing all perturbative results and the substantial agreement existing in the
theoretical physics community, there is at present no independent non-perturba-
tive proof of existence of any asymptotically-free quantum field theory, whose
relevance in the construction of models of the fundamental interactions cannot be
overstressed.

In this perspective, we think that the 1/N expansion[l] (expansion in the
number of field components) may be a rather rewarding instrument of analysis
not only in the context of continuum field theories, where it has long been known
as a major source of non-perturbative information, but also in the case of lattice
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field theories, where, to the best of our knowledge, the 1/N expansion is the only
approach leading to some theoretical evidence for the existence of a continuum
limit and of a non-vanishing scaling region, where the field-theoretical properties
of the models can in principle be explicitly tested with predictable precision.

The conceptual foundations of the power of the 1/N expansion are essentially
the following:

1) Nis an intrinsically adimensional parameter, representing a dependence
whose origin is basically group-theoretical, and leading to well-defined field
representation for all integer values, hence it is not subject to any kind of
renormalization.

2) N does not depend on any physical scale of the theory, therefore we may
expect it to play no rdle in the parametrization of criticality. As a consequence
there is no physical reason not to expect reasonable convergence properties from
an expansion in 1/N, at least in well-defined regions of the other physical
parameters.

Evidence for a finite radius of convergence of the 1/N expansion has been
produced in a number of instances, notably in the proposed exact S-matrices for
a number of two-dimensional bosonic and fermionic models. More generally, the
large-order behaviour of the coefficients of the 1/N expansion can be studied by
applying inverse-scattering techniques to the problem of finding instanton solu-
tions of the effective actions [2-4]. In the case of O (N)-symmetric (¢*)” theories in
less than four dimensions, the 1/N perturbation series can be resummed by
a Borel transformation, and in the two-dimensional non-linear g-model one is led
to conjecture the convergence of the series also for the Green’s functions.

Till now the major domain of application of the 1/N expansion has been in the
evaluation of critical exponents for many different classes of models in the range
of dimensions comprised between 2 and 4 (lower and upper critical dimensions).
At the critical dimension the critical exponents are trivial, but the logarithmic
deviations from scaling and the dynamical mass generation lead to the rich
phenomenology characteristic of asymptotic freedom. This phenomenology can be
studied, on the lattice as well as in the continuum, by applying the 1/N expansion
in conjunction with proper modifications of the methods usually adopted in
standard renormalizable quantum field theories, notably the techniques of regula-
rization and renormalization of the physical parameters. Due to the non-renorma-
lized character of N, the 1/N expansion leads to results whose renormalization
group invariance properties are much more transparent than those of standard
perturbation theory. However, as far as we could check, the 1/N expansion
commutes with perturbation theory, and therefore it provides a direct reinterpreta-
tion and an unambiguous resummation of the perturbative results. Such phenome-
na as the effects of a change of regularization scheme, the r6le of dimensional
transmutation in the parametrization of renormalization group invariance, the
relationship between dynamical mass generation and Borel ambiguity in resumma-
tions, the interplay between dimensional regularization, minimal subtraction, and
¢-expansion, the mixing effects and the subtraction of perturbative tails in the
evaluation of quantum expectation values of composite operators, all find a speci-
fic and transparent illustration in the context of the 1/N expansion already at the
lowest non-trivial order of computations [5, 6].
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The main purpose of the present review is to describe the results that may be
obtained by applying the 1/N expansion to the lattice versions of two-dimensional
spin models. Therefore, we shall only briefly sketch the main results presented in
the (wide) literature on all the above-mentioned topics, focusing only on those
continuum results that are essential in order to introduce their lattice counter-
parts.

The subject of lattice 1/N expansion has not till now received a systematic
treatment: as a consequence many sections of the present paper (especially sect.
5 and sects. 7-14) are essentially original work by the authors.

In order to present a few peculiar techniques and results of the application of
the 1/N expansion to renormalizable lattice field theories, we found it proper to
focus on a specific class of models. These models should be simple enough to
make all calculations as short and understandable as possible, as well as to make
accurate numerical simulations feasible now or in the near future. However, it was
necessary for the completeness of the presentation to deal with a sufficiently rich
phenomenology, notably non-trivial mass spectra, gauge and topological properties,
besides the obvious request of perturbative asymptotic freedom. After much think-
ing, we decided to study a two-parameter model of two-dimensional spin fields
with U(N) global symmetry [7]. This model interpolates between the standard
O(2N)[8-10] and CP" ' models [11, 12], and for special values of the parameters
it represents the gauge-fixed bosonized version of the minimal coupling of mass-
less fermions to CP"~' fields [13].

The present paper is organized as follows:

In sect. 2 we briefly discuss the general results that have been obtained in the
study of d-dimensional spin models, with special emphasis on the topics related to
perturbative and non-perturbative renormalizability.

In sect. 3 we introduce a class of 1/N-expandable two-dimensional spin
models, and discuss the qualitative picture of their properties that one may draw
from a large-N analysis.

In sect. 4 we review a number of exact results, especially factorized S-matrices,
that apply to the models under consideration for peculiar values of the parameters.

In sect. 5 we discuss the 1/N expansion in the continuum version of the
models, introducing our regularization and renormalization procedure, defining
observables, and extracting some quantitative O(1/N) physical predictions.

Section 6 is dedicated to the presentation of a number of alternative lattice
formulations and motivates our choice of a lattice action, which will turn out to
depend explicitly on an Abelian vector field and on an extra parameter eventually
allowing for a Symanzik tree-level improvement of the action.

In sect. 7 the basic ingredients of the 1/N expansion on the lattice, effective
action, propagators, and vertices, are introduced.

Section 8 is devoted to a specific technical problem, the search for integral
representations of the effective lattice propagators that, in the case of nearest-
neighbour interactions, allow a substantial simplification of the numerical tasks in
the evaluation of the effective Feynman diagrams.

In sect. 9 we introduce the basic ingredient of all lattice computations in the
scaling (field-theoretical) regime, the asymptotic expansion of the lattice propaga-
tors for small values of the (dynamically generated) mass gap, ¢.e. for values of the
correlation length much bigger than the lattice spacing (we are always working in
the infinite-volume limit).
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In sect. 10 special techniques for the asymptotic expansion in the case of
nearest-neighbour interactions discussed in sect. 8 are presented.

Section 11 is dedicated to applying the above-mentioned results to the actual
O(1/N) evaluation of physical quantities in the scaling region of our class of
models. We discuss the possible definitions of correlation length, show the
universality of the lattice results, and give a full analysis of the simplest correlation
function, the two-point correlator of the fundamental fields, including the evalua-
tion of the lattice wave-function renormalization factor.

In sect. 12 the above-mentioned lattice contributions to physical quantities are
explicitly evaluated in the case of nearest-neighbour interactions.

Section 13 is devoted to the issue of topological operators on the lattice;
different definitions are analysed and compared in the context of the 1/N
expansion of CPY' models.

In sect. 14 we rephrase our results in the language of standard perturbation
theory and perturbative renormalization group. We discuss the evaluation of the
ratio of A parameters in the context of the 1/N expansion and extract an explicit
representation of the O(1/N) contributions to the lattice renormalization group
p-function, clarifying some subtleties concerning the non-commutativity of some
limits at the border of the space of parameters, which however does not affect the
physical predictivity of the model.

In sect. 15 we review some results concerning the possibility of performing
a finite-size scaling analysis of spin models by the help of 1/N-expansion techni-
ques.

In sect. 16 we analyse the attempts at extracting physical predictions for
models at low N by computing higher orders of the 1/N expansion on finite
lattices.

In the same perspective, we discuss in sect. 17 an alternative approach to
1/N-expandable spin models based on truncated Schwinger-Dyson equations.

Section 18 is devoted to a review of the results that can be obtained by applying
the methods discussed here to a wide class of 1/N-expandable fermionic lattice
models.

Finally in sect. 19 we briefly discuss the relevance of our results and draw our
conclusions.

2. — Spin models in d dimensions and renormalizability.

The renormalization group properties of two-dimensional spin models, notably
asymptotic freedom, are the foundations of our belief in the existence of
non-trivial renormalized quantum field theories describing the critical behaviour
of these models in the coupling domain lying in the neighbourhood of the (trivial)
critical coupling g, = 0 (8. = o0). In the case of 1/N-expandable spin models, the
corresponding field theories are non-linear o-models defined on symmetric spa-
ces. These in turn may also be thought of as special limits of linear o-models
(sometimes coupled to gauge fields) enjoying the proper group symmetries.

In order to understand properly the renormalization group properties of these
models, it is certainly convenient to extend the analysis by treating the physical
dimension d as a continuous parameter in the range 2 < d < 4. It is now possible
to compare the ¢ = d — 2 expansion of the non-linear models with the ¢’ =4 — d
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expansion of the linear models. These latter theories are known to be superrenor-
malizable, with an ultraviolet-stable fixed point at the origin and an infrared-stable
fixed point at «strong» coupling when ¢ > 0. Since the infrared limit of linear
models has the same relevant operator content as the ultraviolet limit of the
non-linear models, the latter must also be renormalizable when ¢ < 2 around their
non-trivial ultraviolet fixed point {14, 15]. As a consequence, the critical exponents
should take the same value when computed in the linear and non-linear models at
the same dimensionality, and in particular the critical exponents of the non-linear
o-models should become trivial at d = 4. As we shall see, this phenomenon is
beautifully illustrated in the 1/N expansion.

In the two-dimensional limit é——0, however, general theorems [16, 17] insure
the impossibility of spontaneous breaking of continuous symmetries. Therefore
there is no weak-coupling, broken-symmetry phase, and g, = 0 is an ultraviolet
fixed point, around which logarithmic deviations from scaling are allowed
(asymptotic freedom). Since no massless modes can be present, non-perturbative
mass generation must occur.

This by now standard scenario has been the starting point for most perturbative
studies of non-linear g-models. After Polyakov’s pioneering paper [18], perturbative
ultraviolet renormalizability was discussed by Brezin, Zinn-Justin, and Le Guillou
[14, 19, 20] and by Bardeen, Lee, and Shrock [21] for O(N) models, and by
Valent [22] for CPY™' models. The extension to more general symmetric spaces
was suggested by Eichenherr and Forger [23, 24] and discussed by Pisarski [25], by
Duane [26], and by Brezin and coworkers [27]. Quite naturally, one adopts dimen-
sional regularization and evaluates the renormalization group f- and y-functions in
the minimal subtraction (MS) scheme. However, a rigorous treatment of these
models shows that generic Green’s functions are plagued in two dimensions by
severe infrared divergences. This problem was first tackled by Jevicki [28] and by
Elitzur [29], who showed that two-dimensional Green’s functions that are fully
invariant under the symmetry group of the model could be computed (in low
orders of perturbation theory) and found to be infrared-finite. This property was
exploited in refs.[30-32] in the context of dimensional regularization, and was
given a rigorous proof to all orders of perturbation theory by David [33-35].
Three-loop calculations for the renormalization group functions were first presen-
ted by Hikami and Brezin [36] for O(N) models, and by Hikami [37] for CP" ™!
models. Extensions to more general symmetric spaces was given in refs. [38, 39].
Anomalous dimensions were computed by Wegner and collaborators to three-loop
order [40], and later to four-loop order [41, 42]. The four-loop order p-function
computation was completed in refs. [43, 44]. It would be beyond the purposes of
the present review to give any detail of the above-mentioned computations.
A collection of results is presented in Appendix A for-easy reference.

In the context of the perturbative approach, another thoroughly investigated
issue is the classical thermodynamics of the models at non-zero external magnetic
field, which ensures the absence of the infrared divergences discussed above.
Renormalization and scaling behaviour were discussed in ref {14] and recon-
sidered by Jolicoeur and Niel [45, 46], who exploited the scaling properties to
devise an extrapolation method allowing for non-perturbative predictions in the
limit of vanishing magnetic field.

When we turn to the approach based on the 1/N expansion, willing to
investigate the renormalizability properties of the models for 2 < d <4, we must
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dramatically change our focus from a situation where the parameter £ can be
considered infinitesimal and employed as an ultraviolet regulator to the case
where the physical dimensionality is a fixed finite parameter. Nothing prevents us
in principle from using some of the dimensional regularization techniques, and
this is one of the basic ingredients in the study of d-dimensional models around
criticality and in the evaluation of critical exponents in the 1/N expansion. An
impressive series of results were obtained by Abe [47-49], Brezin and Wallace [50],
and Ma[51, 52], and more recently with improved techniques by Vasilev and
coworkers [63-566]. In O(N) models, the critical exponent # is by now known to
O(1/N®), while the critical exponent v is known to O(1/N?); O(1/N) results are
available for CPY ' models. Following the procedure indicated in ref. [36], these
results are also the starting point for an evaluation of the renormalization group f-
and y-functions (in dimensional regularization and minimal subtraction) at the
same orders of the 1/N expansion. All the results for critical exponents confirm
the above-mentioned observations about universality between non-linear and li-
near models and triviality in d = 4.

We want to stress that, as far as the present evidence goes, the ¢ and 1/N
expansions appear to be strictly commuting when applied to the evaluation of
physical quantities, such as the critical exponents.

The problem of renormalizability in the framework of the 1/N expansion was
studied by Symanzik [67, 58] and by Arefeva and collaborators. In refs. [69-63] the
ultraviolet renormalizability of the three-dimensional O(N) models in both the
symmetric and the broken-symmetry phase was shown to all orders of 1/N by
applying dimensional regularization. The ultraviolet renormalizability of CPV~'
models when d = 2, 3 was shown in ref. [64] by similar methods. However, in
order to prove the existence of a renormalized critical theory free of infrared
divergences, it was originally necessary to give up dimensional regularization and
attack the problem from the point of view of BPHZL renormalization, which was
done for three-dimensional O(N) models in ref. [65]. Subsequently the results was
generalized to all 2 < d <4 by the introduction of analytic regularization [66].

A different view of renormalizability for asymptotically-free 1/N-expandable
field theories has been put forward by Rim and Weisberger [67]. The essential, if
subtle, equivalence of this point of view with more standard dimensional regulari-
zation approaches has, however, been exposed in ref. [5].

A very important issue in the context of the 1/N expansion of CPY ™! models is
the relevance of classical instanton configurations, that appear to be non-
perturbative in the expansion parameter 1/N, and therefore might in principle
invalidate conclusions obtained in a purely perturbative context. The problem was,
however, solved by Jevicki [68], who showed that, at the quantum effective-action
level, instantons, instead of being stationary points, appear in the form of poles.
One may then demonstrate that the 1/N expansion and the semiclassical method
correspond to two alternative contour integrations of the functional integral.
Further insight on the rbs, it was originally necessaryby David [69]), who
discussed also the problem of summability of the instanton contributions,
computed in refs. [70, 71]. The quantum statistics of CP"~' models was studied by
Affleck {72, 73] also in connection with the topological properties (6-dependence)
of the models, and later analysed and reviewed by Actor [74]. An extension to
CP"™' models coupled to fermions was discussed in ref. [75]. For the sake of
completeness, we also mention that a different non-perturbative approach to
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CP"~! models, based on the rdle of «torons» (classical solutions with fractional
topological charge) has been put forward in recent years by Zhitnitsky [76] and
found to agree with large-N predictions.

A more general non-perturbative issue that may be addressed in the context of
the 1/N expansion is the existence and the role of infrared renormalons [77],
appearing as singularities on the positive real axis of the Borel transform in
massless ultraviolet-free theories, and related to the appearance of non-
perturbative expectation values. These in turn are the basic ingredients in the
operator product expansion approach advocated by Shifman, Vainshtein and
Zakharov in order to describe large-distance effects in asymptotically free theo-
ries [78].

David showed that, in the context of the 1/N expansion of O(N) models,
non-perturbative terms can be organized in an operator expansion, but they have
infrared renormalons [79]; these renormalons cancel against the corresponding
renormalons appearing in the coefficients of the operator product expansion when
Green’s functions (involving only zero-dimension operators) are cormputed. Accord-
ing to the same author [80, 81], only in well-definite instances (e.g., the topological
charge density, and other quantities with a direct physical meaning) non-perturba-
tive expectation values can be defined unambiguously. In any case, it is possible to
show that, in each order in 1/N, the O(N) two-dimensional S-matrix amplitudes
can be written as series in powers of the dynamically generated mass times
a convergent perturbative series[82]. For the partially different point of view
supported by the ITEP group, one should see refs. [83, 84], where the issue of the
operator product expansion in the context of the 1/N expansion of O(N) models
is also discussed.

The subject of the operator product expansion and renormalizability for
critical O (N) models in dimension 2 < d < 4 (where non-trivial criticality exists)
has been thoroughly investigated in recent years by Lang and Ruhl [85-90].

Finally we should mention that the possibility of including non-perturbative
effects directly into the perturbative expansion has been explored by Davis and
Nahm, who discussed both O(N) models[91] and CP"™' models [92], showing
that proper normal-ordering may lead automatically to the inclusion of a non-
perturbative mass gap in the perturbative series (and confinement in cph!
models), and the result of this procedure commutes with the 1/N expansion [93].
In a related development [94] the vacuum structure of the O(N) model is studied
by a variational technique and agreement with conventional large-N results is
found.

3. — 1/N-expandable two-dimensional spin models.

In order to achieve some generality, we shall investigate the properties of
a two-parameter class of 1/N-expandable spin models, described by the conti-
nuum action

(3.1 S=N{dx{$,0,20,2+ B,D,2D,z},
where z is an N-component complex field subject to the constraint

(3.2a) zz=1
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and a covariant derivative D,= 0 p T 1A, has been defined in terms of the
composite gauge fields

1

(3.2b) A Egi-{§6ﬂ2~6ﬂgz} =i%0,%.

u

This action was introduced first by Samuel [7] and it is an interpolating action
between pure CPY~' models ($, = 0) and U(N) vector models (§, = 0), which in
turn are nothing but O(2N) vector models.

We notice that pure CPV~' models enjoy a U (1) gauge invariance related to
the local transformations

(3.3a) z2(x) —exp il (@)] 2 (%),
(3.3b) Z (@) — exp[— id (D)]Z (@),
(3.3¢) A ()= A, (2) —0,A(x).

This invariance will play an important role in determining the structure of the
effective vertices.

We can introduce the (rescaled) weak-coupling parameter f by the following
change of variables:

1
(34a) 2_f= B.+B,,
(3.4b) f = %q

The coupling constant x, as defined by egs. (3.4), enjoys the property of non-
renormalization, ¢.e. the renormalization group trajectories in the (f,, f,)-plane
(in the continuum version of the model) are just the curves of constant » and
correspond to physically different theories. This property will emerge rather
clearly from the discussion of the 1/N expansion. The renormalization group
trajectories are plotted in fig. 1 for several values of x.

x=0

0.0 B, 10

Fig. 1. — Renormalization group trajectories in the { B, [il.}—plane.
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The 1/N expansion is achieved as usual by implementing the constraints (3.2)
by Lagrange-multiplier fields « and 0;. The manipulations are quite standard and
we obtain

N 1 1
35 = d2 (3 —5 z 2 ) 22— —_ e 2 =
(8.5) oF x{ 4% uz+1+%f(z8uz) +ix(zz 1)+1+;¢f(0“ zzﬁuz)}
N nf 1 _
— d2 ~N’ 2 . _ ]
~2f x{ g 1+xf'(a"+l0“)zl +ia(zz 1)}

We can now perform the Gaussian integration over the z-fields and obtain the
effective action

xf — N
3.6 S =NTrln —-0,0,) + —D,D +z'oz}+— — ),
(3.6) ir {1+%f( w0y 1+xf( wDy) 2f( )
where now D, =4, + i0, Finally, rescaling the multiplier field 6, to
0,=0,/1+xf) and mtroducmg the vacuum expectation value of the a-field,
o (x) = ( a) + o, (%), {a) = — imj, we obtain the following form of the effective

action:
(3.7 S=NTrin{—0,0,—1{0,, 0,} +m§+ i} +
N
+—é}{— my — o, + (1 +%/)0,0,}.

In the large-N limit, the value of m} is determined, as a function of f only, by the
saddle-point condition (gap equation)

1 d®p 1
of J @n)? p*+md

(3.8)

Equation (3.8) is in need of ultraviolet regularization; we shall come to this point
in sect. 5.

By taking the second functional derivative of the effective action around the
saddle point, we may now obtain the propagators of the quantum fluctuations
associated with the fields a, and 6,; both are O(1/N) quantities that can be
expressed by the functions

3.9 1 1 _ 1 In E+1

(3.9a) i1 ) () = 2n)’ ¢& + m? (p+q)2+m§_2np2«f i—1
Lo (1 [ €d (pt2a)(p+20)

@0 =3 f)a‘” @ [¢* +mE] [(p + @) + i)

L (ém“l 2)(%—3‘%’1),
E—1 D

where & = /1 + 4mi/p® The effective propagators in d dimensions are presen-
ted for reference in Appendix B.
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[t is now crucial to observe that all the high-order effective vertices resulting
from eq. (3.7) by taking higher functional derivatives are completely unaffected by
the value of ». As a consequence, the vertices share the gauge properties enjoyed
by the CPY~! model, and in particular transversality. This fact in turn implies the
possibility of replacing the propagator (3.98), i.e.,

DD,y 1p,0,
(3100‘) A(G),uv(p) = A(O) (p) (5/” - ﬂg ) + - ﬂ2 y
p x P
where
- 1 E4+1
(3.10b) Ay (p) =—1¢In — 24+ 2nx |,
' 2n E—1

with its transverse part, when computing expectations of gauge-invariant opera-
tors. Equation (3.10) shows that » is a «physical» parameter, related to the ratio of
the mass of the Lagrangian field z (/m, in the large-N limit) to the mass m, of the
propagating field 8 « The exact relationship between the two masses is expressed
in the large-N limit by the equation

dm;, 4m; 1
(3.1D —~ — 1 arcctg s —1=1-—1x, O<n<—.
My My T

This is the basic physical reason why x is not subject to renormalization. m, (%) is
plotted in fig. 2.

2.00
/
/
1.50
Li 1.00
g
0.50!}
]
0.00 0.1 0.2 " 0.3

Fig. 2. ~ The large-N mass ratio mgy/m,, plotted as a function of .

Let us now briefly describe the classes of different physical theories parametri-
zed by .

1) When » = 0, we get m, = 0: Hu becomes a dynamical gauge field giving
rise to a linear confining potential between z and z, and the physical states are
the bound states that are singlets under gauge transformations. This is the
well-known physical picture of the CP¥™' models [95-97).



12 M. CAMPOSTRINI and P. ROSSI

2) For very small values of »x the above picture is substantially unchanged:
in the absence of a gauge symmetry the 2-fields are not automatically confined by
Elitzur’s theorem; however, their mass is so much higher than that of their bound
states to make them effectively disappear from the physical spectrum.

3) With growing » an inversion occurs and the z-fields become the funda-
mental states of the model, while the mass of the bound states becomes bigger and
bigger, when measured in units of m,.

4) At » =1/n we meet a threshold: m, = 2m, and the Yukawa potential
that was the remnant of the linear confining potential completely disappears. This
is a quite interesting model: it is easy to get convinced that the corresponding
action is nothing but the effective action resulting from the functional integration
over a set of N-component massless fermion fields minimally coupled to the
«gauge» field A, (¢f., e.g., refs. [13, 98]). This model has no quantum anomaly, and
its factorized S-matrix is therefore known: the physical states are in the fundamen-
tal representation of U(N) and the bound states have disappeared, as expected.

5) When x > 1/x, there are no bound states, and the models interpolate
smoothly from U(N) to O(2N) symmetry. In particular, for integer values of
n = 7wx the models describe the minimal gauge-invariant coupling of n «flavours» of
massless fermions [99]. This picture gives further support to the notion that s is
a physical parameter not subject to renormalization.

6) Finally, when x— oo the effective field 0 x completely decouples and we
are left, as expected, with the well-known O(2N) non-linear sigma-model,
possessing a factorized S-matrix for the fundamental 2N real fields and showing
absence of bound states.

4. — Review of exact results.

In sect. 3 we mentioned that, for special values of the parameter », a number
of exact results are available, especially concerning exact factorized S-matrices
and bound-state spectra. We must, however, keep in mind that these results have
been obtained in a rather indirect way, by applying such methods as analytic
S-matrix theory or Bethe Ansatz. As a consequence, the 1/N expansion offers the
possibility of verifying the applicability of the above-mentioned methods to the
models at hand and therefore the correctness of the physical interpretation. For
future reference and comparison, we would like to present here a short review of
these exact results.

We start from the observation that the key ingredient for the possibility of
constructing an exact S-matrix is the assumption of factorization of multiparticle
amplitudes into two-particle amplitudes, 7.e. the absence of particle produc-
tion [100]. This property is in turn related to the existence of higher-order
conservation laws. Consider the standard Noether current j, associated with the
global symmetry, and notice that the non-local charge [101]

(4.1) Q"W = %Jdim dzse(x; — x) [Jo (5, )Jo (8, 22)] + dejl (¢ 2,
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where ¢ (x) is the sign function, is classically conserved owing to the equations of
motion. At the quantum level one may show that this conservation law is in
general spoiled by anomalies generated by the renormalization process. These
anomalies are non-perturbative, but their coefficients can be calculated in pertur-
bation theory. A detailed analysis shows that in O(2N) models the anomaly is
actually absent [102], while in the pure CP""' case one finds [103, 104]

dQ(nl)

(4.2) T:;Js”vauﬂv(t, x)dx.

However, when we consider the inclusion of minimally-coupled massless fermions,
we realize that the non-local charge is classically conserved only if we include
a contribution from the fermionic axial vector current. The axial current in turn is
known fo possess a quantum anomaly, opposite in sign to the r.h.s. of eq. (4.2). As
a consequence, the modified non-local charge has no net quantum anomaly and
the corresponding model turns out to possess a factorized S-matrix (104, 105]. In
our language, these results imply the possibility of finding explicit S-matrices in
the cases » = o0 and » = 1/7n, respectively.

Without belaboring on the techniques used in order to solve the factorization
equations, we only recall that the Fock space is decomposed irreducibly into
subspaces labelled by a definite particle number n. States are identified by sets of
particle momenta {P,}, and factorization is expressed by

(4.3) (P'(out) | P(in) > = { P'(in) n S(P;, P)|P(in) ),

l<r<s<n

where S(P;, P,) is the two-particle S-matrix. S is best expressed in terms of
rapidity variables 0, = arctgh (P,,/P,,). Imposing O(2N) symmetry [106] one
may assume
(4.4) 84, 4 05 jlout) [0, k; 0, I(in)) =
= 5(01 - 0/1) 5(92 - 9/3) [5ij5A:lS1 (0) + 5ik5le2(6) + 5i15jk83 (9)] +
+0(0,—0)0(0,—6)[6,,005,(~0)+04648:(—0)+040;S,(—0)],

where 0 = 6, — 6,. Solving the constraints one finds

(4.5a) S3(0) = — @),

4 s
(N—18"?

(4.5b) S,(8) = — @,

b1

, Sy
(N—=1D(in —0)

and, assuming minimality in the number of poles and zeros in the physical sheet,

(4.6) S, () = R(OYR(im — 0),
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( 1 7;9> <1 iB)

MN——m—m—m—mo-——Ir{=——

2(N—-1) 2=m 2 2n
2 2(N—1) 2= on

The result shows no bound-state poles [107], and was checked in a 1/N expansion
up to second order [108].

CP"~"' models with minimally-coupled fermions in turn correspond to SU (N)
symmetry, and the form of the factorized S-matrix is [98, 109, 110]

where

4.7 R(0) =

(4.8a) {0, 4 05, j(out)|0,, k; 0, I(in)) =
=3(07—0)8(05 — 0,)[04,u,(0) + 6,,0,u,(0)] —
— 3007 —0,)38(05—0)[0,0,u,(0) + 8468,u,(0)],

(4.8b) <03, 4 05, jlout)|6,, k; 0, I(in)) =
=800, —0)5(0;—0,)[040,t,(0) + 6,0,t:,(0)] +
+0(0—0)0(05—0)[040,7(0) + 6,0,7:(0)],

where the bar indicates antiparticles. The constraints imply

49 6) = — 2% 0, (8
(4.9a) U/z()——NOM(),
(4.9b) r(0) =r,(0) =0,
in
(4.9¢) t,(0) = —mtl @.

Moreover, the crossing symmetry requires
(4.9d) L) =u(in—0),
(4.9¢) b, (0) =uy(in — 6).

Finally, from minimality one obtains

RN
2 2= 2 N 2=n

paT
2 2n 2 N 2r

There are no bound-state poles: the bosons interact repulsively and the fermions
are screened by a «secret» long-range force, while the gauge field loses the zero
mass pole. This result was again checked in the 1/N expansion.

(4.10)
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We must notice that these integrable models can sometimes be solved by the
Bethe Ansatz and quantum inverse-scattering methods, always reproducing the
above-mentioned results.

For completeness we mention that the factorized S-matrix approach allows in
some special cases the determination of exact form factors. In particular, in
O(2N) models it is possible to evaluate the matrix elements of the Noether
current between the two-particle state and the vacuum. The result was checked in
the 1/N expansion to O(1/N) by the use of the (explicitly known) spectral
representation of the propagator A, (p*)[111]. One can write

2

(4.11) A (DY) =4nm} sinh inh* lw L
: T) =4nm, ,  sinh™ -y = =
(o) ¥y 0 l// 9 4m5
Therefore
2 2
9 ; p s P (1)
A (D =4nm21+—Jd“—9—.,
@ (P T RIS
(412) { 4m%
) sinh ¢ J1 w
() =21 ———, cosh"-¢ =
P (1) ¢° + n’ 2(15 am;

.

Likewise, when » = 1/7, we have

. tgh 3y 2 Poy (1)
A (p*) =2 = | ap? =2,
' A u
(4.13) < s
, ctgh ;¢
2 =2 —2L
P (1) e

“

A last very important exact result that can be obtained from the analysis of the
S-matrices for integrable models is the analytic determination of the so-called
mass—A-parameter ratio, where the A-parameter is defined in standard perturba-
tion theory (MS scheme) in terms of the subtraction scale g and the universal
coefficients b, and b, of the renormalization group f-function:

dg’ 1
(4.14) A?Z#GXD[—JEKZ,—Jzu(bog)_bl/b“expli—%—g].

The seminal result was obtained by Hasenfratz and collaborators in the case of
O(2N) models {112, 113}:

8 LA2(N=-1)) 1
(4.15) m= (;) 1 Ass.
1 s)
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The analysis can be repeated in the » = 1/ model; the final result is

2 1/N 1
(4.16) m={>] ——— A.
e 1

14—
N

As we shall see in the next section, these results can also be explicitly verified in
the context of the 1/N expansion.

5. — The 1/N expansion in the continuum: regularization and renormalization.

The Feynman rules for the 1/N expansion of the model can be easily derived
by introducing external currents coupled to the z-fields before perfoming the
functional integration. They are summarized in fig. 3. The 1/N expansion is an
expansion in the loops of the effective fields «, and 0 - In the graphical represen-
tation, a closed loop of the z-fields stands for an effective vertex