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Dipartimento di Fisica dell’Università di Pisa and I.N.F.N., Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
rossi@df.unipi.it

Abstract

The general relationship between an arbitrary frequency distribution and the expected value of the frequency
distributions of its samples is discussed. A wide set of measurable quantities (“invariant moments”) whose
expected value does not in general depend on the size of the sample is constructed and illustrated by
applying the results to the Ewens sampling formula. Invariant moments are especially useful in the sampling
of systems characterized by the absence of an intrinsic scale. Distribution functions that may parametrize
the samples of scale-free distributions are considered and their invariant expectation values are computed.
The conditions under which the scaling limit of such distributions may exist are described.
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1. Introduction

In many interesting physical, biological and social phenomena, whenever no intrinsic scale for the relevant
variables is present, the emergence of “scaling laws” is phenomenologically observed [1]. However, strictly
speaking, a power law is not a proper way of fitting empirical data, since no choice of the exponent can keep
the higher moments of a power law distribution from diverging, while every phenomenological distribution
leads to finite values for all moments. This is not just a technicality: it is rather a reflection of the fact
that the long tail of a power law distribution is in practice cut off by the existence of some “hidden” scale,
irrelevant in the scaling region, but eventually forcing some upper limit on the variables describing the
system. It would therefore be convenient to parametrize the data by means of more regular distribution
functions, sufficiently damped for very large values of the variables, but admitting power law distributions
as regular limits when the control parameter implementing the cutoff is sent to its limiting value.

A related issue concerns the effects of sampling, which may be non-trivial even when we restrict our
attention to the expected values of the sampled variables. On average sampling does not affect the distribu-
tions of individual objects belonging to different kinds, but when we consider frequency distributions (that
is the number of kinds that are represented k times in a given population) we cannot in general expect that
the frequency distribution in the samples be the same as in the original population, even after averaging over
many different samples, basically because the cutoff induced by sampling acts differently (and in general
nontrivially) at different scales. It is therefore quite important to be able to extract from the frequency
distribution of the samples some information reflecting directly some intrinsic property of the underlying
distribution.

Our purpose is therefore threefold. First we discuss the general relationship existing between some
arbitrary frequency distribution and the expected value of the frequency distributions of its samples, and
construct observables whose expected values turn out to be independent of the sample size, and therefore
coinciding with the value taken by the same observables in the full distribution.

Then we study classes of distributions whose samples preserve the functional dependence on the param-
eters present in the original distribution, establishing the connection between the (a priori unknown) values
of the parameters of the distribution and the (empirically estimated) parameters of the sample distributions.
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Finally we study the scaling limit of these distributions (when it exists), in order to explore the possibility
of their use for the phenomenological description of systems that are theoretically expected to show scaling
in the limit when all empirical cutoffs (including those induced by sampling) are going to disappear.

In Section 2 we establish the notation and the general framework of our analysis.
In Section 3 we construct a wide set of combinations of expected values that do not depend on the sample

size.
In Section 4 we apply our approach to the popular Ewens sampling formula, showing that its features

are consistent with the general pattern and computing its invariant expectation values.
In Section 5 we consider the limiting case of a small sampling applied to a large population.
In Section 6 we focus on the case when the original population and its samples are sufficiently large in

comparison with typical frequency values, finding a useful mathematical relationship between the generating
function of the expected values of the sample distributions and the generating function of the original
distribution.

In Section 7 we analyze a class of distributions (the so-called negative binomial distributions) admitting
a scaling limit and enjoying the property that the distribution of expected values of the samples has the
same mathematical form as the original distribution. We also compute in a closed form the values ot the
basic invariant expectation values for these distributions.

Finally in Section 8 we analyze the scaling limit itself and discuss the conditions under which one may
expect this limit to be a sensible description of the original system.

Appendices are devoted to the proofs of some mathematical results and to discussing the issue of corre-
lation between random samples.

2. The general framework

We consider a set of N objects (“individuals”) belonging to S different kinds (“species”), and we assume
that the set contains N̂a objects of the a-th kind, subject to the constraint

∑
a N̂a = N .

A sample is a set of n objects, containing n̂a objects of the a-th kind, subject to the constraint
∑
a n̂a = n.

The probability P{n̂a} of extracting a specific sample {n̂a} from a given set {N̂a} is obtained from the
multivariate hypergeometric distribution

P{n̂a} =

(
N

n

)−1 S∏
a=1

(
N̂a
n̂a

)
.

One can easily compute the relevant expected values, obtaining in particular

〈n̂a〉 = N̂a
n

N
= n p̂a, 〈n̂2

a〉 − 〈n̂a〉2 =
N − n
N − 1

np̂a(1− p̂a)

where p̂a ≡ N̄a/N is the probability of extracting an object of the a-th kind in a single extraction.
It may be useful to consider also the limiting values of these expressions for small samples n̂a � N̂a. In

this limit the probability of a specific sample is well approximated by the multinomial distribution

P{n̂a} = n!

S∏
a=1

1

n̂a!
(p̂a)n̂a .

A frequency distribution is a set of values {Nk}, where Nk is the number of kinds such that for each of
them there are k objects in the original set. According to the definition, the following conditions must be
satisfied:

N∑
k=1

Nk = S,

N∑
k=1

kNk = N.
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The frequency distribution of a sample is a set of values {nl}, satisfying the conditions

n∑
l=0

nl = S,

n∑
l=1

l nl = n.

Notice that the frequency distribution of a sample formally includes the (unobservable) value n0, corre-
sponding to the number of kinds, present in the original set, which are not represented in the sample.

It is in principle possible to compute the probability of any sample distribution {nl} as a function of a
given set {Nk}. To this purpose it is convenient to define the intermediate variables Nkl, representing the
(random) number of kinds characterized by k objects in the original set and by l (l ≤ k) objects in the
sample. The variables Nkl are constrained by the conditions:

n∑
l=0

Nkl = Nk,

N∑
k=1

Nkl = nl.

The probability P{Nkl} of a specific configuration {Nkl} follows from the general probability formula [2]:

P{Nkl} =

(
N

n

)−1 N∏
k=1

[
Nk!

k∏
l=0

1

Nkl!

(
k

l

)Nkl
]
,

subject to the constraint
∑n
l=0Nkl = Nk.

The probability P{nl} of finding a frequency distribution {nl} in a sample is obtained by summing the

probabilities P{Nkl} over all configurations satisfiying the constraint
∑N
k=1Nkl = nl. The corresponding

multivariate generating function can be defined as

ε(n)({tl}) ≡
∑
{nl}

P{nl}

n∏
l=0

tnl

l =
∑
{Nkl}

P{Nkl}

N∏
k=1

k∏
l=0

tNkl

l .

It is also possible (and it will be quite convenient) to define a cumulative generating function E(x; {tl})
for the probability of finding the frequency distributions P{nl} for samples of all possible sizes :

E(x; {tl}) ≡
N∑
n=0

(
N

n

)
ε(n)({tl})xn =

∑
{Nkl}

N∏
k=1

(
Nk!

k∏
l=0

1

Nkl!

[(k
l

)
xltl

]Nkl
)

=

N∏
k=1

[ k∑
l=0

(
k

l

)
xltl

]Nk

,

where we used the explicit expression of P{Nkl} and all the relevant constraints.
The expected values 〈nl〉 can be computed starting from the above expressions and from the relationship

〈nl〉 =

N∑
k=1

〈Nkl〉 =

N∑
k=1

∑
{Njm}

NklP{Njm}.

Straightforward manipulations lead to the results [2]

〈Nkl〉 = Nk

(
k
l

)(
N−k
n−l
)(

N
n

) , 〈nl〉 =

∑N
k=1Nk

(
k
l

)(
N−k
n−l
)(

N
n

) .

It is easy to check that the following relationships are satisfied:

n∑
l=0

〈nl〉 =

N∑
k=1

Nk = S,

n∑
l=0

l 〈nl〉 =
( N∑
k=1

kNk

) n
N

= n.
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In order to fully appreciate the relevance of considerations based on the expected values we must evaluate
the variance of the frequency distribution of the samples. Taking second derivatives of the generating function
E(x; tl) one obtains:

〈n2
l 〉 − 〈nl〉2 =

∑
k,k′

NkNk′

(
k

l

)(
k′

l

)[(N−k−k′
n−2l

)(
N
n

) −
(
N−k
n−l
)(

N
n

) (
N−k′
n−l

)(
N
n

) ]
+
∑
k

Nk

(
k

l

)[(N−k
n−l
)(

N
n

) − (k
l

)(N−2k
n−2l

)(
N
n

) ]
.

Notice that in the large N limit the term quadratic in Nk is depressed by a power of 1/N . This observation
suggests that important limits of the above results may be obtained when considering large populations.

3. Invariant expectation values

It is important to be able to define a set of expectation values that are independent of the size of the
sample, and therefore may reflect directly the properties of the original frequency distribution.

We consider the following combinations of expected values:

〈m(n)
{pi}〉 ≡

(
n

P

)−1∑
{qi}

I∏
i=1

[(qi
pi

)
∂

∂tqi

]
ε(n)({tl}|{tl=1},

where pi are I arbitrary positive integer numbers, subject only to the constraint that P ≡
∑
i pi ≤ n.

The definition of the quantities appearing in the r.h.s. implies that the derivatives with respect to tqi are
the joint factorial moments of the distribution; therefore we are dealing with weighted combinations of joint
factorial moments. When some of the indices pi are equal to one, the expected values may be expressed in
terms of a combination of lower rank moments (I ′ < I).

It is possible to recognize that the quantities 〈m(P )
{pi}〉 are related (up to a trivial combinatorial factor

taking into account the existence of np coincident values of the indices pi) to the probability of finding
the configurations {pi} in the sample containing P elements, and are therefore strictly connected with the
probabilities P{np} .

Exploiting the properties of the generating function E(x; {tl}) we prove in Appendix A that

〈m(n)
{pi}〉 = 〈m(N)

{pi}〉 ≡M{pi}

for all sets {pi} such that P ≤ n. Hence the expected values of the nontrivial invariant moments m{pi}
evaluated for samples of arbitrary size n ≥ P , coincide with the moments M{pi} of the original frequency
distribution. If the original set was generated by a random process, the M{pi} will also be expected values.

Recalling that ε(N)({tl} ≡
∏
k t
Nk

k we may now generate a representation of all P{np} in terms of Nk, without
making use of the coefficients Nkl.

The properties of the binomial coefficients make it possible to invert the relationship between invariant
moments and joint factorial moments, thus finding that[ I∏

i=1

∂

∂tqi

]
ε(n)({tl}|{tl=1} =

∑
{pi}

I∏
i=1

(−1)pi−qi
(
pi
qi

)
〈
(
n

P

)
m

(n)
{pi}〉 =

∑
{pi}

I∏
i=1

(−1)pi−qi
(
pi
qi

)(
n

P

)
M{pi}.

The basic invariant moments are

m(n)
p =

(
n

p

)−1 n∑
q=p

(
q

p

)
nq.

According to the inversion formula

〈nl〉 =
∂ε(n)

∂tl
|{tm=1} =

n∑
p=l

(−1)p−l
(
p

l

)(
n

p

)
〈m(n)

p 〉 =

n∑
p=l

(−1)p−l
(
p

l

)(
n

p

)
Mp.
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One may define generating functions for the expected values of nl and of the basic invariant moments:

f (n)(t) ≡
n∑
l=0

〈nl〉tl, g(n)(z) ≡ f (n)
(
1 +

z

n

)
=

n∑
p=0

(
n

p

)
Mp

( z
n

)p
.

Notice that a special case of the above formula is

F (t) ≡
N∑
k=0

Nkt
k, G(z) ≡ F

(
1 +

z

N

)
=

N∑
p=0

(
N

p

)
Mp

( z
N

)p
.

It is immediate to recognize that g(n)(0) = G(0) = M0 ≡ S, and dg
dz

(n)
(0) = dG

dz (0) = M1 ≡ 1.

4. Application to the Ewens sampling formula

The multivariate Ewens distribution [3, 4], called in genetics the Ewens sampling formula, describes a
specific probability for the partition of n into parts, and found its main applications in the context of the
neutral theory of evolution and in the unified neutral theory of biodiversity [5, 6]. Since the Ewens formula
and its possibile generalizations have been the subject of a wide and still growing literature [7, 8, 9, 10], it
may be interesting to apply the results presented in Section 3 to this specific instance. In our notation the
Ewens probability distribution takes the form

P{nl} =
1

ℵn

n∏
l=1

1

nl!

(θ
l

)nl

,

where ℵn ≡ Γ(θ+n)
n! Γ(θ) , 0 < θ <∞ and

∑
l nl = n.

The joint factorial moments of the Ewens distribution are easily computed [11] and one can show that

I∏
i=1

[ ∂

∂tqi

]∑
{nl}

P{nl}

n∏
l=0

tnl

l =
ℵn−Q
ℵn

∏
i

( θ
qi

)
, Q ≡

∑
i

qi ≤ n.

We are then left with the task of computing the summations appearing in the equation

〈m(n)
{pi}〉 =

(
n

P

)−1∑
{qi}

I∏
i=1

(
qi
pi

)
ℵn−Q
ℵn

∏
i

( θ
qi

)
=
P ! (n− P )! Γ(θ)

Γ(θ + n)

I∏
i=1

( θ
pi

)∑
{qi}

I∏
i=1

(
qi − 1

pi − 1

)
Γ(θ + n−Q)

Γ(θ) (n−Q)!
.

We prove in Appendix B that

∑
{qi≥pi}

I∏
i=1

(
qi − 1

pi − 1

)
Γ(θ + n−Q)

Γ(θ) (n−Q)!
=

Γ(θ + n)

Γ(θ + P ) (n− P )!
,

hence

〈m(n)
{pi}〉 =

P ! Γ(θ)

Γ(θ + P )

I∏
i=1

( θ
pi

)
≡ 1

ℵP

I∏
i=1

( θ
pi

)
,

showing that the expected values of the invariant moments of the Ewens distribution are independent of the
sample size and are related to the probability of the configuration {pi} in the sampling of P elements.

We stress that invariant moments, because of their independence from the size of the sample, may
become a highly valuable tool in testing the applicability of the Ewens distribution (and of the conceptual
assumptions underlying its derivation) to the interpretation of actual empirical data.
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5. Large population and small samples

A significant simplification occurs when N →∞ while all other variables are kept finite. Setting x̃ ≡ Nx
and t0 = 1 in the cumulative generating function and taking the large N limit we obtain

Ẽ(x̃; {tl}) ≡ 1 +

∞∑
n=1

ε̃(n)({tl})
x̃n

n!
=

∞∏
k=1

[
1 +

k∑
l=1

(
k

l

)( x̃
N

)l
tl

]Nk

→
∞∏
k=1

[
1 +

∞∑
l=1

(k x̃
N

)l tl
l!

]Nk

.

We now define (for n, l different from zero) the following set of coefficients:

c(n)({nl}) ≡ (−1)s−1(s− 1)!

n∏
l=1

1

nl!

( 1

l!

)nl

,

where s =
∑
l nl and n =

∑
l l nl.

Notice that the definition of Ẽ implies that

ln Ẽ(x̃; {tl}) ≡
∞∑
n=1

[∑
{nl}

c(n)({nl})
n∏
l=1

(
ε̃(l)({tl})

)nl
]
x̃n.

It is also possible to recognize that, under the same assumptions,

ln Ẽ(x̃; {tl}) =

∞∑
n=1

[∑
{nl}

c(n)({nl})
n∏
l=1

tnl

l

]
m̃(N)
n xn,

where we introduced the large N limit of the basic invariant moments: m̃
(N)
p ≡

∑
q Nq(q/N)p.

Comparing the two results we conclude that, for each value of n > 0,

∑
{nl}

c(n)({nl})
n∏
l=1

(
ε̃(l)({tl})

)nl

=
[∑
{nl}

c(n)({nl})
n∏
l=1

tnl

l

]
m̃(N)
n .

These equations allow in principle for the recursive determination of all ε̃(n)({tl} in terms of {m̃(N)
p }

(with p ≤ n), starting from the initial condition ε̃(1) = t1. Higher rank invariant moments (I > 1) in the
large N limit become polynomials in the basic moments.

However one must keep in mind that, when the set {Nk} is not fixed, but generated by a probability
distribution (as in the case of the Ewens formula), the expected values of the products of basic moments
appearing in the l.h.s. do not coincide with the products of the expected values.

6. Large populations and large samples

When k, l� N,n one may systematically exploit the property that, for small a and b,(
N − a
n− b

)
→ ρb(1− ρ)b−a

ρn(1− ρ)N−n
ρ ≡ n

N
.

Expressing N and n in terms of Nkl one may then obtain

P{Nkl} →
N∏
k=1

[
Nk!

k∏
l=0

1

Nkl!
PNkl

kl

]
Pkl ≡

(
k

l

)
ρl(1− ρ)k−l.

As shown in Appendix C, in this limit the constraint
∑
l nl = n becomes irrelevant, and expected values

of products of Nkl with different values of the index k factorize into products of expected values computed
for each separate value of k.
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We can therefore compute directly the generating function for a fixed sample size, generalizing the
multivariate multinomial distribution:

ε(n)({tl}) =

N∏
k=1

∑
{Nkl}

[
Nk!

k∏
l=0

1

Nkl!
(Pkl tl)

Nkl

]
=

N∏
k=1

[ k∑
l=0

Pkl tl

]Nk

.

The consistency of the approximation is verified by observing that ε(n)(1) = 1, because of the property

that
∑k
l=0 Pkl = 1.

The expected value of nl turns out to be:

〈nl〉 =

N∑
k=1

NkPkl,

and one may check that the conditions on
∑
l〈nl〉 and on

∑
l l 〈nl〉 are still satisfied.

We can also calculate the variance of the frequency distribution of the samples when k, l� N,n:

〈n2
l 〉 − 〈nl〉2 =

N∑
k=1

NkPkl(1− Pkl).

The above expression is always smaller than 〈nl〉 and as a consequence deviations from the mean become
unimportant for sufficiently large values of 〈nl〉.

In the same limit we may derive a notable relationship between the generating function of the original
frequency distribution and the generating function of the expected values of its samples. In fact we may
recognize that for sufficiently large N and n

g(n)(z) =

∞∑
p=0

Mp
zp

p!
= G(z).

Since in general f (n)(t) = g(n)
(
n(t − 1)

)
and F (t) = G

(
N(t − 1)

)
, it is then easy to check that in the

limit under consideration
f (n)(t) = F (1− ρ+ ρ t),

As a direct consequence of these results, whenever the (size-independent) function γ(z) ≡ G(z) − G(0)
can be cast into a form exhibiting no explicit parametric dependence on N , the expected values 〈nl〉 can be
obtained from Nk by the replacement N → n.

Notice that in the limit k, l� N,n the definition of the basic invariant moments m
(n)
p simplifies to

m(n)
p → p!

np

n∑
l=p

nl

(
l

p

)
.

It is worth analyzing in this limit the explicit expressions for the basic invariant moment m
(n)
2 :

〈m(n)
2 〉 = M2 →

1

N2

N∑
k=1

k(k − 1)Nk =

S∑
a=1

(N̂a
N

)2 − 1

N
=

S∑
a=1

〈
( n̂a
n

)2〉 − 1

n
≡ 1

α
.

As shown in Appendix D the above results may be used also in order to parametrize the expected value
of the estimate for the correlation between samples under the assumption of independent random sampling.
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7. A class of distributions and its properties

As mentioned in the Introduction, distributions found in samples may often correspond to systems whose
asymptotic (N → ∞) distribution is expected to obey a scaling law. However the exponent of the scaling
law will in general be nontrivial, in contrast with the prediction offered by the simplest neutral models. An
example of empirical and theoretical evidence for nontriviality is offered by surname frequency distributions
(see Ref. [12] for a recent review), recalling that surnames are expected to mimick the behavior of selectively
neutral alleles. it is therefore especially interesting to consider parametrizations that may reflect notriviality
of exponents, and in particular the class of negative binomial distributions [13], which can be obtained
starting from the generating function

Fc(t) =
N

x

(1− x)1−c

c

[
1− (1− xt)c

]
=

∞∑
k=1

N

x

(1− x)1−c

Γ(1− c)
Γ(k − c)

k!
(xt)k,

where 0 < x < 1 and the parameter c is assumed to vary in the range 0 ≤ c < 1.
The asymptotic behaviour of the distribution for large k is easily obtained by observing that in this limit

Γ(k − c)
k!

→ 1

k1+c
, Nk →

N

x

(1− x)1−c

Γ(1− c)
xk

k1+c
.

We can now compute the generating function fc(t) for the expected values of the frequencies found in
the samples according to the general rule previously discussed, and obtain

fc(t) = fc(0) +
n

y

(1− y)1−c

c

[
1− (1− yt)c

]
,

where we have defined y = ρx
1−x+ρx .

The distribution of the samples has the same form as the original distribution, once the replacements
N → n and x→ y have been performed, and therefore we obtain the asymptotic behaviour

nl →
n

y

(1− y)1−c

Γ(1− c)
yk

k1+c
.

It is possible to define a combination of parameters independent of the size of the sample:

β = N
1− x
x

= n
1− y
y

.

It is useful to represent x and y in a form showing explicitly their dependence on the dimension of the
sample and on the invariant parameter β:

x =
N

β +N
, y =

n

β + n
.

It is now possible to evaluate the expected value of the invariant moments from the expression

γc(z) ≡ Gc(z)−Gc(0) =
β

c

[
1−

(
1 +

z

β

)c]
,

showing no explicit parametric dependence on N ; we therefore obtain (for p 6= 0)

Mp = β1−pΓ(p− c)
Γ(1− c)

→ β1−p

Γ(1− c)
p!

p1+c
,

1

M2
≡ α =

β

1− c
.

The limit of the above results when c→ 0 is smooth, and it corresponds to the Fisher distribution [14],
such that

F0(t) = −β ln(1− xt), Nk = β
xk

k
.
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In the same limit one obtains:

f0(t) = β ln
(β +N

β + n

)
− β ln(1− yt), nl = β

yl

l
.

The generating function of the invariant moments is obtained from γ0(z) = −β ln(1 + z/β), and as a
consequence the expected values of the invariant moments (p 6= 0) are exactly Mp = (p− 1)!β1−p.

It is worth noticing the peculiar relationship β = α (where α was defined in Section 6). By comparing
these results with the large θ limit of the invariant moments of the Ewens distribution we may easily check
Watterson’s [15] and Hubbell’s [5] observation that in this limit θ is strictly connected to Fisher’s α.

8. The scaling limit

Let us now consider very large systems, and assume that we can gather information only through the
sampling of n objects belonging to the system, with n large but not necessarily comparable to N .

The analysis of the invariant moments may then allow us to check the applicability of a phenomenological
description of the samples based on some distribution falling into the classes discussed in the previous
Sections.

In the case of a positive response to the check it is then possible to find numerical estimates of the
parameter β and of the exponent c. Such estimates are clearly meaningful only if β does not turn out to be
significantly greater than n.

Under these assumptions, we can infer a description of the original system, and in the case N � n such
a description will correspond to computing the limit x → 1 of the previous results. As a consequence, at
least for observable (i.e. not too large) values of k, the original distribution is expected to be well described
by the scaling form

Nk →
N cβ1−c

Γ(1− c)
1

k1+c
.

Appendix A. Expected values of the invariant moments

We consider the cumulative generating function for the expected value of a given invariant moment
(setting P =

∑
pi) for samples of all possible sizes:

N∑
n=0

(
N

n

)(
n

P

)
〈m(n)
{pi}〉x

n ≡
∑
{qi}

I∏
i=1

[(qi
pi

)
∂

∂tqi

]
E(x; {tl})|{tl=1}.

We now observe that, due to the property that

lnE(x; {tl}) =

N∑
k=1

Nk ln
[ k∑
l=0

(
k

l

)
tlx

l
]
,

the derivatives appearing in the above defined cumulative generating function, computed at tl = 1, can be
expressed as summations (over {ki} indices) of products of Nki times a universal x-dependent factor

[ I∏
i=1

(
ki
qi

)]
xQ(1 + x)N−K ,

where Q =
∑
i qi and K =

∑
i ki. However the following identity holds:(

qi
pi

)(
ki
qi

)
=

(
ki
pi

)(
ki − pi
qi − pi

)
.
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As a consequence the cumulative generating function is proportional to the factor

[ I∏
i=1

(
ki
pi

)]
xP (1 + x)N−K

∑
{qi}

[ I∏
i=1

(
ki − pi
qi − pi

)
xQ−P

]
=
[ I∏
i=1

(
ki
pi

)]
xP (1 + x)N−P .

The summations over the indices {ki} may now be formally performed, and, by matching the coefficient
of xN in the two sides of the equation, the result can be easily recognized to coincide with the expected
value of the invariant moment computed for the original distribution times the combinatorial factor

(
N
P

)
.

In conclusion we find

N∑
n=0

(
N

n

)(
n

P

)
〈m(n)
{pi}〉x

n =

(
N

P

)
〈m(N)
{pi}〉x

P (1 + x)N−P .

Expanding the r.h.s. in powers of x and noticing that
(
N
n

)(
n
P

)
=
(
N
P

)(
N−P
n−P

)
we finally obtain

N∑
n=0

(
N

P

)(
N − P
n− P

)
〈m(n)
{pi}〉x

n =

N∑
n=0

(
N

P

)(
N − P
n− P

)
〈m(N)
{pi}〉x

n,

implying immediately that, as long as n ≥ P ,

〈m(n)
{pi}〉 = 〈m(N)

{pi}〉 ≡M{pi}.

Appendix B. Proof of a combinatorial formula

The identity ∑
{qi≥pi}

I∏
i=1

(
qi − 1

pi − 1

)
Γ(θ + n−Q)

Γ(θ) (n−Q)!
=

Γ(θ + n)

Γ(θ + P ) (n− P )!
,

where Q =
∑
i qi and P =

∑
i Pi, can be proven by recalling that for real numbers α and positive integers

q ≥ p

(1− x)−α =

∞∑
m=0

Γ(α+m)

Γ(α)m!
xm, (1− x)−p =

∞∑
q=p

(
q − 1

p− 1

)
xq−p.

Hence expanding in powers of x the two sides of the identity

[ I∏
i=1

(1− x)−pi
]
(1− x)−θ = (1− x)−(θ+P )

and exchanging the order of summations in the l.h.s. we get

∑
{qi≥pi}

I∏
i=1

(
qi − 1

pi − 1

)
Γ(θ +m+ P −Q)

Γ(θ) (m+ P −Q)!
=

Γ(θ + P +m)

Γ(θ + P )m!
.

The desired result is then obtained by setting m = n− P .
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Appendix C. Fluctuations of the sample size in the unconstrained large N limit

The multivariate generating function ε({tl}) was computed in Section 6 after relaxing the constraint∑
l l nl = n. In order to show that the constraint is automatically satisfied in the large N limit we construct

a generating function for the expected value of the powers of ν =
∑
l l nl in the large N distribution:

η(w) ≡
∑
ν

P(ν)w
ν =

∑
{Nkl}

P{Nkl}w
∑
l nl =

N∏
k=1

( ∑
{Nkl}

Nk!

k∏
l=0

1

Nkl!
(Pklw

l)Nkl

)
,

and applying the multinomial formula we obtain

η(w) =

N∏
k=1

( k∑
l=0

Pklw
l
)Nk =

N∏
k=1

(1− ρ+ ρw)kNk = ((1− ρ+ ρw)N .

Expanding the result in powers of w we immediately obtain P(ν) = PNν .
Since ν is distributed according to the binomial distribution, the relevant expected values are

〈 ν
N
〉 = ρ ≡ n

N
, 〈 ν

2

N2
〉 − 〈 ν

N
〉2 =

1

N
ρ(1− ρ).

Hence fluctuations of ν/N around ρ vanish like 1/N in the large N limit.

Appendix D. Correlation between samples

An important test of randomness in sampling is offered by the estimate of the correlation between two
different samples. Let us consider two random samples, characterized by the sets of values {n̂a} and {m̂a}
and by their sizes n and m. The index a labels different kinds, as in Section 2. The correlation between the
two samples is

C =

∑S
a=1 n̂am̂a√∑S

a=1 n̂
2
a

√∑S
a=1 m̂

2
a

.

Replacing n̂a and n̂2
a with their expected values, computed in Section 2, we obtain (in the large N limit)

S∑
a=1

〈n̂a〉〈m̂a〉 = nm

S∑
a=1

p̂2
a,

S∑
a=1

〈n̂2
a〉 = n2

( S∑
a=1

p̂2
a +

1

n
− 1

N

)
,

S∑
a=1

〈m̂2
a〉 = m2

( S∑
a=1

p̂2
a +

1

m
− 1

N

)
.

By making use of the results presented in Section 6 we can now express the expected value of the
correlation between samples in the form

〈C〉 =
1
α + 1

N√
1
α + 1

n

√
1
α + 1

m

.

For samples of equal size n the expected value of the correlation takes the form 〈C〉 = n
α+n

α+N
N .
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