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Abstract. A modified strong coupling expansion al- 
lows for the introduction of an invariant master field 
in lattice theories involving unitary matrices. We ana- 
lyze the corresponding saddle point equations in the 
case of chiral models and show how to identify the 
perturbative value of the critical point corresponding 
to the large N transition. Numerical results for 
d=2 ,  3, 4 are presented and their relevance beyond 
the perturbative regime is discussed. 

A new approach to the large N limit of lattice gauge 
models has been recently proposed by Kazakov, Koz- 
hamkulov and Migdal [1] (KKM). 

In this formulation, a modified strong coupling 
expansion allows for the introduction of a gauge in- 
variant master field. The corresponding saddle point 
equations can be established by expanding in the 
strong coupling parameter fl and can be solved nu- 
merically. The solutions obtained in this way give 
an indication on the nature and location of the large 
N phase transition. 

We extended and improved this method consider- 
ing the case of U(N)x  U(N) principal chiral models 
in d dimensions. 

These models are a useful laboratory in order to 
test ideas and methods for matrix models on the lat- 
tice because their rich structure is not obscured by 
the presence of the gauge degrees of freedom, and 
their continuum properties are non trivial and well 
established. 

In Sect. 1 we describe the model and the method. 
In Sect. 2 we discuss the modified strong coupling 

expansion. 
In Sect. 3 we establish the saddle point equations 

and show how to identify (the perturbative value of) 

the critical point and how to reduce the computations 
to the standard strong coupling expansion. 

In Sect. 4 we present and discuss our analytical 
and numerical results, commenting on the reliability 
and efficiency of the method. 

Appendices are devoted to the presentation of 
technical details. 

1 The model and its effective action formulation 

We start from the lattice partition function 

Zn(fl) = S H d u. exp {Nil ~ tr (U. U.++ u)} (1.1) 

where U, are U(N) unitary matrices defined on the 
sites of a d-dimensional hypercubic lattice, # are the 
2 d directions on the lattice and d U, is the Haar  mea- 
sure of integration over unitary groups. 

For  our purposes we only need to evaluate ther- 
modynamical properties, mainly the free energy per 
degree of freedom 

1 
F N (fi) = ~ In Z N (fl) N ~ ~> F (fl) (1.2) 

where V is the lattice volume, and the internal energy 
per degree of freedom 

EN(fl) = ~flfl FN(fl) N~oo> E (fl). (1.3) 

The extension of the K K M  method amounts to the 
following essential steps: 
(i) We replace the unitary measure d U with an inte- 
gration over complex matrices by the introduction 
of a Lagrange multiplier matrix 

d U n : d  2 U. b(Un + U . - 1 )  

da .  e x p { _ n t r [ ~ . ( U .  + U.--1)]} d 2 U.. (1.4) 
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(ii) We perform the integration over  d 2 U n. For chiral 
models this can be done exactly (in contrast with 
gauge models where the action is quartic in U,) and 
leaves us with the following representation of the par- 
tition function (apart from irrelevant multiplicative 
constants) 

ZN (fl) = ~ l~ d % exp IN ~ tr ~, - tr In (c~, 5,~ 
n 11 

(1.5) 
# 

In the strong coupling (small fi) regime the loga- 
rithm can be formally expanded, and the effective ac- 
tion can be represented as a sum over closed loops 

ZN(fl)= ~ l~ d % exp ~N ~ tr la,- ln ~, 
n ~ n L 

+ T Z c~,-'~;+lu, "" ~,+',~+...+u~ , (1.6) 
k = 1 #1 ---#k 

where the condition ~ # / = 0  corresponds to the re- 
quest that the loops be closed. 
(iii) We diagonalize the c~ fields by the equations 

O~ij= E ~'~i+k ~k ~'~kj (1.7) 
k 

d ~ = [ I  d 2 / H  (2 / -  2i) 2 d (2 (1.8) 
i i< j  

where s9 are unitary matrices and 2k are the eigen- 
values of ~. 
(iv) We perform (at least formally) the integration 
over the angular variables f2 and express the partition 
function as an integral over the eigenvalues 21 ") of 
0~ n 

ZN(fl): s d2! ") exp { N  2 ~ [ 1  y, (2!.) - In 2~ ")) 
n,i i 

+ ~ -  ~ ln(2} " ) -  ~(.)~ • a(.) ,~(.,) "~j ] l ~ e f f l ,  tv , /~) 
i+ j  

= 51-~ d 2! ") e x p  { N  2 E ~ "~[](m)' f l)] }.  
n,i n 

(1.9) 

(v) In the large N limit, fluctuations of the 2 fields 
are suppressed, and the saddle point value 

2~ ") = 2i (i.10) 

is translation invariant. 
We can therefore define the translation invariant func- 
tion 

Seff(,~k, fi)=-l ~i ()~i-- ln 2i) 

where 

1 
+ ~ ~ ln (2 / -  2) + Aeff(#k , fl) 

i:# j 
(1.11) 

are the moments of the saddle point matrix e-1. 
The saddle point condition is then 

0 
N ~/Seff(,~k, fl) 

1 2 1 0 
1 - -  ~i - I - ~  j ~ i  ~ + N  ~ Aeff(/~k, fl)=0 

(1.12) 

where 

(1.13) 

O#k N -- k27 k-a. (1.14) 
82/ 

The large N free energy is the value taken by the 
function S,ff(2, fl) at the saddle point value of 2. 

2 The strong coupling expansion 

No approximation was involved in deriving the re- 
sults presented in Sect. 1. However in practice we can- 
not determine the exact value of 

E a ( n  i.](m) 1 R~ In ~ 1-[df2, , - , -  

n n 

-exp N t r  E k -  0Cn 1 . . .  ~n-+l#,+. . .+#k_,  (2 .1)  
k=a i 

because the O integration is not trivial and cannot 
be performed in closed form. 

As a consequence we must resort to an expansion 
of the integrand in powers of ft. 

Taking the logarithm in the rhs ensures us that 
the lhs can still be represented as a sum over closed 
connected loops, weighted by a power flk (where k 
is the length of the loop) and by a function of p/ 
depending on the structure of the loop. One of our 
tasks was to derive the rules leading to the determina- 
tion of these weight functions. 

The most relevant parameter in the description 
of a loop is the number of times each lattice site is 
visited. Whenever a site is visited only once, the result 
of the corresponding (2 integration is straightforward 

dQ(~- 1) o = Pa 6o. (2.2) 



Therefore the contribution of self-avoiding loops 
to the effective action Aoff(2,/3) is just a factor ~]/3k/k 
for every different loop of length k starting from a 
given point. 

Moreover, every self-avoiding section (of length 
h) of a more general loop can be shrinked to a single 
link joining its endpoints after extraction of a factor 
#hl-1 ~3h-i, 

We can therefore focus on loops whose sites are 
visired more than once. Among these, we identify sin- 
gle-site loops, one-dimensional loops and "poten-  
tials ". 

The weight of single-site loops is obtained trivially 
as a consequence of the previous analysis and for 
sites that are visited p times is just 

/3P #p. (2.3) 

One dimensional loops (that is loops enclosing no 
area) are obtained as a slight generalization of the 
previous, and their weight is simply 

(,,)../3zp.. 
p=l 

(2.4) 

where np is the number of sites visited p times. 
The real difficulty comes from "potentials" [3], 

i.e. contributions from two (or more) self-avoiding 
subloops sharing two or more links. We evaluated 
the contribution of all two-loop potentials, both for 
parallel and antiparallel loops. 

The connected contribution of a couple of loops 
sharing n links (n > 3) is for finite N 

 (N+IF \ fi-4:i 

1 N2 2\ ) -  #~" (2.5) 

for parallel loops and 

2N 2 - 1  
N2 u1+n 2 i-1 

[NZ-l\Z(N~-l#2)" N2 #2, (2.6) 

for antiparallel loops. 
The large N limit of these expressions is respec- 

tively 

and 

145 

n-3 
n ~ ..~ (~2 __ ]~2)3 E (n--k--2)(k+ 1) #~k ]2~-k- 3. (2.8). 

k=0 

In Appendix A we discuss some technical details 
of the O integration presenting a few steps that are 
essential in order to derive the abovementioned re- 
sults and their possible extensions. 

In Appendix B we exhibit the explicit form of the 
effective action to 8 th order in /3 and for arbitrary 
d. 

Here we would like to make a few comments 
about the structure of the effective action Aeff(2, fl). 

It is immediate to check that the substitution 
c~-1=/~ 1, turning Seff(2,/3) into the free energy of the 
gaussian model expressed as a sum over closed ran- 
dom paths, has the same effect on Aeff(2, fl), where 
it corresponds to the choice #, = (/0". 

Our results concerning the O integration can be 
easily be shown to be completely consistent with this 
result; it is especially pleasant to observe that the 
"potentials" converge to their gaussian value (/~2, and 
n/~2, respectively) after the substitutions. 

From a computational point of view, this result 
is a very important and easy check of accuracy for 
the perturbative evaluation of A~ff. 

3 The saddle point evaluations and solutions 

We have already established the general form of the 
saddle point equation. Let's just mention that, by the 
introduction of an eigenvalue density function p(2) 
describing the 2 distribution, we can recast it into 
the form [1] 

2~d2'  P(2') (2) 2 _ 2 , = Q  (3.1) 

where 

Q(x)= ~ Qk xk (3.2) 
k=0 

and 

Q o = - i  Q a = I  Qk+1=k~Ae f f (# i ,  fl). (3.3) 
c/& 

In this formalism, the relationship 

n-3 (k -{-1) (k -]- 2) ~2kfl~ k-3 (2.7) 
#~ + (#~ --/~2)3 ~ 2 

k = o holds. 

#k = ~ ( ~ -  d 2' (3.4) 
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Now one might in principle follow K K M  and 
write down a set of M + 2 equations determining con- 
sistently the integration domain and the first M mo- 
ments #k when Aeff (and hence Qk + 1, k < M) has been 
evaluated to order flzM. 

However for our purposes a different approach 
will prove more convenient. 

Our starting point is the crucial observation that 
the substitution 

#k = Ok 1 (3.5) 

into Aeff(#k, fl) turns Self(2, fl) into the exact strong 
coupling value of the free energy, to all orders in the 
1/N expansion. 

Otherwise stated, #k = 6ka is the exact strong cou- 
pling master field for the chiral model (and for unitary 
matrix models in general) in this formulation, as well 
as for all truncated models obtained from the pertur- 
bative expansion of the effective action. 

This is just a property of the e representation of 
the integration over unitary matrices: let's indeed con- 
sider the generating functional for U(N) integrals [4- 
6] 

Z ( A A + ) - ~ d U  exp[N tr(A + U+AU+)]  

= ~ d e e x p [ N t r e - N t r l n e + N t r ( ~  1AA+)] 
(3.6) 

Z(A,  A +) appears to be the also generating functional 
for the moments of ~-  1 

From the definitory properties of Z(A,  A +) one 
can deduce that the expectation values of the mo- 
ments of e -  a are exactly 

#k = 6k 1 k < N. (3.7) 

The U(N) integrals can be performed by first inte- 
grating over d 2 U, dO and then replacing the moments 
#k with their expectation values, which do not depend 
on the details of the interaction because their evalua- 
tion is purely local. 

If we substitute (3.5) into the saddle point equa- 
tion, the consistency requirement leaves us with an 
equation determining the branch point r where the 
integration domain starts. 

The resulting equation is 

Q (r) + 2 = 0 (3.8) 

and we must remember that 

Qk+ l =-k ~ Aef f(#i=(~il  , fl). (3.9) 
C #k 

In Appendix C we show explicitly that (3.8) also 
follows from K K M  treatment, and the condition for 

the existence of a double solution (bifurcation point) 
can be recast into the form 

~ Q (r) = 0. (3.10) 

Therefore, since the solution of (3.8) is some func- 
tion r =  r(fl), (3.10), after application of the chain rule, 
corresponds to the condition 

dr 
- - - , o e  for f l~f lc.  (3.11) 

The bifurcation condition, when it can be satisfied, 
is a rigorous definition of the large N critical point 
for chiral models: one branch is the unphysical con- 
tinuation of the strong coupling solution, while the 
other is the weak coupling solution, obviously satisfy- 
ing (3.8) only at the critical point. 

Equation (3.11) does also correspond to our intu- 
ition that, in the presence of a transition whose order 
is greater than one, there is no metastable phase and 
the criticality coincides with the endpoint of accept- 
ability for the strong coupling solution (turning point 
for r(fl)). 

When we consider the perturbative expansion of 
the effective action we may still want to apply our 
criterion for the (perturbative) determination of the 
critical point. The kind of information thus obtained 
is of a non perturbative nature, because it leads to 
a determination of the critical point (better and better 
with increasing orders of perturbative theory) in a 
region of values of fl detached from the region f l~0  
where the expansion is defined. 

Establishing (3.8) perturbatively presents enor- 
mous semplifications in comparison with the determi- 
nation of the effective action. 

Actually because of the condition #k = 61k the only 
terms that are relevant to this problem are those de- 
pending only on #1 or at most linearly on #k, k > 1. 

As a simple example, let's consider the evaluation 
of Qz:it  follows from its definition and (1.3) and (3.5) 
that 

Q2 = fl E(fl). (3.12) 

Equation (3.12) is just a special case of a more 
general relationship between the coefficients Qk and 
a class of correlation functions that can be computed 
in the standard strong coupling expansion of the 
model. 

One must first recognize that the saddle point 
equations imply [6] 

1 + Q ( x ) = ( 1  tr ~ x  ~). (3.13) 



However the classical equations of motions of the 
model expressed in the variables U,, e, allow us to 
relate the expectation values of moments of e, to ex- 
pectation values of functions of U,. The derivation 
of the equations of motion is straightforward 

/3~ U++u-~ e, U, + (3.14) 
# 

U + U. = 1 (3.15) 

and implies the classical relationship 

an=/? Z U.+. Un. (3.16) 
/a 

As a consequence, one obtains 

(1  x )--1 (3.17) 
Q(x)= ~ t r  l_Bx~U++.U. 

# 

Qk+ 1 = ( 1  t r ( f l~  U.~. U.) ~) k > l  (3.18) 
/t 

implying in particular (3.12). 
Therefore Qk can be computed directly in the 

strong coupling expansion of the chiral model. 

- r  
4 

3 , 5 -  

3 -  

2 , 5  

2 

1.5 

1 

0 , 5  

0 
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4 Analytical and numerical results 

The main practical difficulty in this approach is relat- 
ed to the fact that not all truncations of the full model 
exhibit the critical behavior we have outlined; actual- 
ly one can show that such a behavior is obtained 
if and only if M is odd and the highest k for which 
Qk is nonzero is even. 

The typical pattern for even M shows a minimum 
of r(fl) for some fl~e0 

- r  

dr =0. (4.1) 5 
~ = ~  

4.5  

Therefore for /~>/7 there is no acceptable value 4 
of r(/?) (the function is no longer monotonic) and /7  3.6 
is an endpoint for the strong coupling solution. This 
does not imply it is the critical point of the model s 
(a first order transition might occur for some fl<fi) 2.5 
and its value can only be used as an upper bound 
for tic (see however Appendix D for a discussion of 2 
the one dimensional model). ~.5 

We performed the strong coupling expansion for 
the coefficients Qk up to order ill0 and for arbitrary 1 
d. Our results are presented in Appendix E. o.s 

An analysis of results shows that, when M = 5 and 
d > 3 a bifurcation exists and the corresponding nu- 
merical value of/~c can be easily determined. 

M = I  

J 

0 ' 012 ' 

Fig.  1. The  func t ion  - r ( /~ )  fo r  M =  1, 2 a n d  d =  1 

0.4 
pz 

- r  

M = 3  
4.5 M=.4 

3 '  I - 

2.5 

2 M=2 

1.5  

1 

0 . 0 4  0 . 0 6  O. 12 0 . 1 6  0 .2  0 . 2 4  

p2 
Fig.  2. T h e  f u n c t i o n  - r(fl) for  M = 1 + 5 a n d  d = 2 

I I  0 It  

M = 4  

0 0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8  0,1 0 .12  0 . 1 4  

Fig.  3. The  func t ion  - r(fl) for  M = 1 + 5 a n d  d = 3 

0 . 1 6  

p2 
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-r  
8 

4.5 

4 

3.5  

3 

2.5 

2 

1 .5  

1 

0 . 5  

M = 4  

J i i i i i 

0 0 . 0 2  0 . 0 4  0 . 0 6  
i i 

0 . 0 8  

Fig. 4. The function --r(fl) for M =  1 +5  and d=4 

Table 1. Numerical values of tic as a function of d and M 

d M 

1 2 3 4 5 

i 

o,1 

1 0.3536 0.5 
2 0.25 0.3536 0.2925 0.3340 0.3381 
3 0.2041 0.2887 0.2242 0.2651 0.2276 
4 0.1768 0.25 0.1893 0.2227 0.1858 

When d = 2  one has to face the fact that the first 
nontrivial contribution to  Q6 occurs at order fl16, and 
therefore for 4 < M < 8 there is no bifurcation. 

However  for higher and higher M the function 
r(fi) becomes closer and closer to its exact value for 
the chiral model for most  values of fl, and we can 
take its endpoint fl as an indicator for the location 
of criticality. 

Table I shows the values of tic for various choices 
of M and d. The bar  denotes values corresponding 
to fi instead of tic- 

Different at tempts to determine the critical point 
of chiral models in large N have been made. 

Mean field analysis [7 9] leads to the gaussian 
value tic= 1/2d, with no possibility of evaluating the 
corrections to this result in lid perturbation theory. 

Mixed methods involving weak coupling, mean 
field and strong coupling fl expansion do not seem 
very reliable. 

Montecarlo results are too insensitive to make an 
higher order transition apparent,  and moreover  only 
a limited number  of results have been presented in 
the literature. 

Finally Green and Samuel [3, 10] have derived 
an order parameter  that should indicate the presence 
and location of a critical point in chiral and gauge 
models in the large N limit. 

Their result for d = 2 is tic = 0.324, not inconsistent 
with our numerical values. 

A final comment  concerns the possible existence, 
for d sufficiently large, of a double transition, such 
that the large N transition we are observing might 
occur in a metastable phase and therefore be com- 
pletely irrelevant. This phenomenon happens in lat- 
tice gauge theories in large N for d > 4  [12]. 

We argue that this is not the case for chiral mod-  
els. Indeed we can show that, for all M__< d the leading 
powers of d in the strong coupling expansion form 
a series in the variable fl2d and enjoy the property 
(related to (3.8)) 

Q~e~ (f12 d ) =  [Q~ead (f12 d)]k. (4.2) 

As a consequence the power series solution for 
r(fi) takes the form 

M M 
r lead=  - -  2 O ~  ~-dl(fl2 d ) :  - -  Z [Q~2eaa(flZ d)] k (4.3) 

k = O k-d] 

and we found [12] that 

M 
Qlead(x) = ~, q. x" (4.4) 

n=l 

n -1  
q , = ( n - -  1) ~, q,q ,_ ,  ql =2.  (4.5) 

p = l  

However  when M, d ~ oo, the coefficients q, grow 
as fast as (2n)!/3(n!) and therefore the convergence 
radius of Ql~,d is zero and there is no nontrivial value 
xc such that the large d asymptotic  behavior of the 

critical point be: f l c ~ / l / d  as expected [11] if the 
large N phase transition were different from the mean 
field phase transition. 

In conclusion we think ours is a sensible and reli- 
able method for the computat ion of the critical point 
in the large N chiral models. 

Numerical  improvement  of our results requires 
however a better control on the higher orders of the 
large N strong coupling series. 

Appendix A 

The essential ingredient in the evaluation of one-di- 
mensional loops is the computat ion of the 0 integrat- 
ed connected contribution of the single link loop run 
k times 

tr(c~- 1 c~ 2 1)k. (A.1) 

The contribution of such a loop to the partition 
function can be expressed in the form 



{~} ,:~1~I ~ IN tr (~l-*m~2a)"] "= 6(y'mn,,-k) .  (A.2) 

This expression admits a character expansion 

k 
~I [tr(~1-1~ l~m']nrn--V l"{r} 1 

m = 1 {r) 

(A.3) 

where {r} are the irreducible representations of U(N). 
Trivially one obtains 

k 

H N"m = Z C{~,~} d{~} (A.4) 
m = 1 {r} 

where d{,} is the dimension of the representation. 
From the orthogonality of characters one obtains 

k 1 
t"{~} c '{*}-~ (A.5) 

Z l ~  nm !(m)nm ~-'{nm} ~'~{nm}- Vrs" 
{nm} m= 1 

Therefore the contribution to the partition func- 
tion is 

Z(r)(al- 1 ~21) d{,~. (A.6) 
(r} 

The g? integration over characters is straightfor- 
ward and leads to the general relationship 

Z { r } ( ~ l  I . . -  a n  - 1 )  _ _ ] 7 -  Z{r}(0{~1)  
Ida, dO, 

' "  d{~} 1il d{~} 
(A.7) 

Therefore the O-integrated contribution to the 
partition function is 

(r} 

k 1 
= ~ l--[nmm.~ [tr(e(m) tr(c~2m)] "~. 

{nm) m =  1 

(A.8) 

By comparison of the integral and the integrand 
one recognize that the contribution to the effective 
action is 

1 
(tr c~-m)(tr C~-m). (A.9) 

m 

It may be interesting to compare this result to 
the effective action for the two matrix model found 
by K K M :  the coincidence of results is not unespected 
but not even obvious. 

The evaluation of potentials is achieved by estab- 
lishing recursive equations relating the n + 1 link po- 
tential to the n link potential by integration over a 
single site. Integrations can be performed by system- 
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atic use of (A.7). The algebraic details of our deriva- 
tion of (2.5) and (2.6) are not especially illuminating 
and we shall not present them here. 

Appendix B 

The strong coupling expansion of the effective action 
to 8 th order is 

[ 2 1 2 / d  \ 2 2 / d  \1 f14 

[ 1 2 / d \  
+ l ( "  2 "2 2 + 2"1 #2"3 + ~ " 3 ) ~ 1 ) +  (24"2 "~ + 8 , ~  "3 

/d\  2 2 3 + 1 6 "  4 "2 + 8 "1"2  "3 + 4 "6) ~2) + (24 "1"2  +16  "1"3  

+48#4 ,2+32#6)(d3)lf16+[(#2"~+2#~p2+2"1#~"3 

d 8 6 
+ 2 , 1 , 3 , , + - ~ , 2 2 , 4 + � 8 8  

+ 16 "5 "3 + 138,4 ,~ + 6 , 4  "4 + 152 #~ "2 #3 + 84 ,2  #23 

+ 3 6 .  2 . 2 . 4 + 4 0 . 2 . ~ + 4 8 # 1 . ~ # 3 + 8 . 1 . 3 . 4 + 6 # ~  

+6.~m) 2 +12(31.~+80.~.~+20.~.a+86.~.~ 

+ 6 / ,4 .4  + 52 # 3 . 2 . 3  + 26 #2 .3  z + 6 .2  # 2 . 4  + 4 . 2  .~ 

+4. tp~ .3 ) (d3 )+48(27 .~+36#6#e+8 .~ .3  

Appendix C 

Following K K M  we can define a function 

V(xl=2~ ~ d 2 x  (C.1) 

analytic in the whole complex plane except for a cut 
corresponding to the support of the eigenvalue distri- 
bution. 

Equation (3.1) is now equivalent to 

Re F(x)= Q (x). (C.2) 

A solution is to be found in the form 

F (x) = Q (x) + L(x) ] / r  2 - -  2 r z x + x 2 (C.3) 

where L(x) is a polynomial. 
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Using the expansion 

1 
rm pm(z ) x-m- 1 (C.4) 

V / r 2 - 2 r z x + x  m=o 

where Pro(Z) are Legendre polynomials, one obtains 
the set of equations 

M 
l+r+ ~ Pm(z) Qm+l r m + l = o  (C.5)  

m=l  

M 

Z-I-r-[- 2 Pm-l(g) Qm+l r m + l = 0  (C.6)  
m : l  

M 
2 ~ p,, Pk- , . (Z)  r 1 --m __ Pk - 1  (Z) -~- Pk(z) r 

m = l  

M 
+ ~Pk+m(z )  Qm+lrm+l=O k = l  . . . .  ,M. 

?7l=1 
(C.7) 

By substituting #k = 6~k into this set of equations one 
finds 

M 

l + r +  ~ nm(~)Q,,+, ~ + ' = 0  (C.8) 
m=l  

M 

Z-l-r-~- 2 em-l(z) Q.m+l rm+l : 0  (C.9)  
m=l  

M 
P k - l ( Z ) + P k ( z )  + Z Pk+m(z) Qm+l r m + l : 0  

m = l  

k =  1 . . . . .  M.  (C.10) 

The choice 

z = l  (c.~i) 

implying Pk(Z)= l, reduces this set of equations to the 
single equation 

2+Q(r)=0.  (C.12) 

By subtracting the first equation from the second and 
dividing by z - 1  we obtain the condition for the ex- 
istence of a second solution 

Pm-l(Z)-Pm(z) Qm+l r m + l  = 0  (C.13)  
i +  z--1 z:x 

m=l  

that is 

] 1--  ~ mQm+l  r m+l - - - r  2 6~ 
r n = l  = 0r  (2+Q(r)) =0  (C.14) 

corresponding to the condition 

dr 
Pd~-~~176 for //-~//c. (C.15) 

Appendix D 

In the one dimensional model the coefficients Qk are 
easily determined to be (see also Appendix E) 

Q2 = 2fl 2 (D.1) 

Q3 = 2//4 (D.2) 

Qk=O k>3 (D.3) 

to all orders in strong coupling perturbative theory. 
The strong coupling saddle point condition is 

therefore 

1 + r  +2//2 r 2 +2//4 r 3 : 0  (D.4) 

and it admits no bifurcation point for the function 
r(//). 

However by solving in f12 

//2 (r) = ( ~ - -  1)/2 r (D.5) 

one finds that the end point for the strong coupling 
regime is determined to be 

fi=�89 f =  -2 .  (D.6) 

This result coincides with the exact solution for 
the critical point of the model, thus indicating that 
in this case fi=flc, which also justifies the absence 
of bifurcations. 

Appendix E 

The coefficients Qk computed up to the 10 th order 
in the strong coupling expansion are 

+[960 (~) + 49920 (~) + 462720 (~) 

/d\q 1o +952320 ~5)]// (E.1) 

representing also the strong coupling internal energy 
of large N chiral models in arbitrary d expanded to 



order fllO and 

+~3~o~o(~)j~1o 

~ =[~4 (~)+4~ (~)] ~o +[4~ (~)+ 7~o (~) 
d 8 d 

+,1~o(:) 
+~oo(~)]~o 

(E.2) 

(E.3) 

Qs =[24 (~)+2ss (~)+ 3s4 (~)] t ~8 

+304(~) ~ ~ ,o 

Q6:[720 (~)+3840 (~)+ 3840 [5)] fl/d\] lO. 
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