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ABSTRACT. For O(N), U(N) and SU(N) groups, we study the weak coupling behavlour of the 

one-link integrals using their Schwinger-Dyson equations. Special attention is paid to the 

perturbative corrections to the large N limit. In the case of unitary groups, the 1IN 2 correction 

is obtained explicitly. 

0. INTRODUCTION 

A few years ago, one-link integrals over the unitary groups received much attention;indeed these 

integrals are especially important in the mean field approach to U(N) or SU(N) lattice gauge 

theories. A relevant result was obtained by Brower et al. [1 ,2] ,  who using the technique of 

Schwinger-Dyson equations, discovered a closed form for the one-link integrals over U(N) and 

SU(~V). Their result is valid for any finite N and with arbitrary sources [see (1.1)]. 

More recently, it was stressed that similar integrals with matrix variables in the adjoint 

representation of SU(N) also play a role, namely in the study of reduced chiral models and in the 

mean-field approach to reduced gauge models [3 ]. 

This new problem seems very different from the previous one and we do not know how to 

treat it at the moment; however, since the adjoint representation of SU(N)is a subgroup of 

SO(N 2 - 1), it could be relevant to study the one-link integral over orthogonal groups. Further- 

more, lattice gauge theories with orthogonal groups were also considered by several authors 

[4, 5] so that the knowledge of the one-link integral over SO(N) presents some interest for anyone 

who might want to study the mean-field approach of these last models. 

In the first part of the paper, we establish the Schwinger-Dyson (SD) equations for the general 

O(N) group integral. We do not succeed in finding a closed-form solution apart from the special 

cases N = 1, 2, 3 (treated in Appendix) and in the large N-limlt which receives special attention. 

We also present the first terms of the weak coupling expansion of the integral using a modified SD 

equation. 

The second section is devoted to U(N) [and SU(N)] one-link group integrals. Using the same 

technique, we study this weak coupling expansion and we point out the main difference: in the 

latter case we have been able to compute the O(1 IN 2) and O(1/N 4) corrections to the large N 

limit. This is interesting because, despite its beauty, the closed form of [2], cannot be easily used 

to study the behaviour of the solution. 
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1. THE O(N) CASE 

The one-link integral on the group O(N) is defined by 

= [ d V exp N Ca~ V~a 
~o (x) 

(1.1) 

where V denotes an arbitrary matrix in the group, dVis the Haar measure and C is an arbitrary 

real matrix. This last matrix can be decomposed in the form 

C = HO, (1.2) 

where H is a real symmetric matrix and O an orthogonal matrix 

H =  CvFCC t , (1.3) 

0 = H-1C,  0 t =CtH -1" (1.4) 

H can be diagonalized by an orthogonal transformation H = QDQ t and, therefore, by changing 

variables to 

K ~ OtQK'Q t (1.5) 

and exploiting the invariance of the Haar measure, one shows that the integral (1.1) depends only 

on the eigenvalues hi of the matrix CC t 

NZ CC t = Q diag (hi,  ..., hN )Q t 

= Q diag (C~ ..... C~v)Q t. 

(1.6) 

We now apply the standard technique based on writing down an appropriate SD equation for 

Z. The orthogonality condition takes the form 

6 
z = (1.7) 

and since Z depends only on hi, one obtains the differential equation 

32Z N bZ 1 ~ ~ / 3 Z  3 Z )  
h i T * - - + -  z =' (18  2 3hi 2 i  ih[ -h i  Ohi gZ. 

This equation is similar to that derived by  Brower and Nauenberg [6] and Brezin and Gross [7] 

for U(N); the only difference is in the numerical coefficients. However, while the equation for U(N) 

could be explicitly integrated for all N, in this case we found solutions only for N = 1,2 and in the 
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large N limit. In this hmit, if one rescales the eigenvalues according to Xi -+ N 2 Xi, one can write 

an equation for W = In Z/N; when N ~ ~ this equation reduces to 

2 

+--Z )-4 
X i ( ~ )  + I ( ~ W ) 1  ~ ( O W  OW 1 

2 N  j # = i X j - ~ . z \ O X j  OX, 
(1.9) 

It is trivial to check that thJs equation is solved by 

a W(Xi) (1.10) W~=g 

l, I 
(1.11) 

The W defined here is the solution found by Brower and Nauenberg [6] and Gross and Brezin [7] 

for the group U(N). The large N solution can be checked explicitly at least in the case when C is 

proportional to the identity matrix 

Cm ldV(hV)m dVexpCtr V= ~ ~.~ 
m 

C m C 2n e 2 

Z ~.v(m 1)!! = Z 2n!! =exP2- 
m e v e n  n 

(1.12) 

We can re-express Equation (1.8) in terms of the eigenvalues ci [see (1.6)] of the matrix H 

OZ Z 1 c OZ OZ 
OCT+../ cT -~i ( / --Ocj ci ~c~. ) = Z" (1.13) 

This equation can be used to compute the 1/ci-correction to its large N approximation (1.10). To 

this end, we factorize out of Z the large N limit contribution: 

Z = X- exp NW= (1.14) 

Then the new equation obtained for the function X takes the form 

- - v : = _ = + Z  2 e '  - - Z ~  x ( 1 . 1 s )  
3c k 2 |3c  k e~ ac l 3c k 4 +c~ l r  -- l c k C l  

which is suitable for an expression in 1/c~, as can be seen by naive power counting. 

Here we present the first few terms of the weak coupling expansion of X (neglecting an irre- 

levant multiplicative constant) 
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X = I + -  ~ - - +  
8t<]Ci+C] ~ g'l ' (Cz+C])2 

+6 ~ 1 1 
+2 L (c i+c] ) (ck+c l )  " k4-i#] (Ci+Cj)(Ci+Ck) i<k<l  

]>k i<] 

(1.16) 

This leads to 

W 1 1 Z l o g ( c  i+c j ) -3 -N2  +1 Z 1_ + 
N - N = [ ~ i c i - 4 i ,  i 8 8 i < j c i + c  j 

1 1 1 
+ -  + 

16 i " (Ci + C])  2 
+ 0  - 

k . , j  (ci + cfl(ci + ck)  
k<l 

(1.17) 

The different coefficients appearing in the expansion can be checked either by direct comparison 

with the N = 3 case given in the Appendix, or by direct asymptotic expansion of the integral (1.1). 

The latter can be done by expanding Vin (1.1) in terms of a generator (V = exp ice) and by per- 

forming Gaussian integration in co. The quadratic form of the exponent is, for instance 

1_ Z S ( 2 )  = _ ( c e i ] ) 2  (c i + r 
2i< i 

(1.18) 

After rescaling the eigenvalues c i according to c i = N7 i , it is obvious to see that the correction to 

the large N part in (1.17) is of order 1/N and that-the quadruple summation which appeared in 

(1.16) disappears from the free energy W as expected from our large N limit calculation (since 

this term is of order N 2 as well). 

To get more information requires a lot of work; furthermore, at the moment it is not obvious 

how to resum the terms which contribute to the 1/N correction of the large N limit. This is unlike 

the U(N) analog, as we shall see in the next section. 

At least we want to show how the strong coupling expansion of (1.1) begins. It can be deter- 

mined from Equation (1.8) but it is crucial here that the equation determines the odd terms 

independently of the even ones. 

Imposing the boundary condition (we suppose N > 2) 

Z(O) = 1, OZ = 0 
~Ci ci=O 

(1.19) 

we have obtained 

3 Z(ci) = 1 + l h c c t  + [(N + 1)(hCCt) 2 - 2h(CCtCCt)] + O(c6) - (1.20) 
N X ( U -  1)(N+ 2) 
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From the elementary group integrations 

d V  VijVkp ... Vmn (1.21) 

it is known [8] that, up to order N, only even powers o f c  i appear in the development (1.20). At 

orders larger than N, the integrals depend on eil" .. iN as well and odd powers appear. 

2. U(N) CASE 

The one link integral over the group U(N) is defined to be 

Z(A, A ?) = f u  dUexp Nh(UA t + U t A )  
or) 

(2.1) 

with the same convention as before. According to Brower et al. [2], Z(A, A +) depends only on 

the eigenvalues of the matrix AA+;it is useful to define z i by 

2NN/A~ =R diag (Z 1 , Z 2 . . . . .  Z N ) R  +. {2.2) 

With these notations it was shown [2] that Z is given by the following ratio: 

det z~-111_ 1 (Zi) 
Z(zD (2.3) 

A 

where 

A - det Z [ -  1 = l-] (zi - zj) (2.4) 
i</" 

and I h denotes the modified Bessel functions. Solution (2.3) was also confirmed in [9], using 

different methods. 

So far, the knowledge of the solution (2.3) does not obviously provide an idea of the 

behaviour of the function Z. Of course, one can try to use the Taylor expansion (or asymptotic 

expansion) of the Bessel functions but the task is rather hard. 

A strong coupling expansion of Z (small values ofzi) was given by Bars [10] who, using a 

character expansion, was able to compute explicitly the integral (2.1) up to order (zi) [10]. An 

analogous result was also given by Samuel [11]. 

Here, our purpose is to present a weak coupling expansion; to this end we will use again the 

SD equation of the integral (2.1). 

The idea is the same as in the first section, i.e., to consider the SD equation to factorize the 

large-N limit [see (1.10)] 

(z4) Z ; X exp NW (2.5) 
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and to study the equation in X. For instance, it takes the form 

3_ X . . . .  + : 3 zb  3Za + . (2.6) 
Oza OZ2a b Z~ -- Z a 

This is the analog of Equation (1.1 5) for O(N) but here the situation is more agreeable. Indeed, by 

expanding X in powers of 1/Za, we have been able to resum all terms contributing to the same order 

in N. We mean that for the first few terms we have obtained the following form (neglecting an 

irrelevant multiplicative constant) -, .  

3 t)-25/8 ( 1 )  X =1 + [(1 - t )  -'/~-11 +2~t(3)(1 +O ~ , z i  -s (2.7) 

where 

1 
t(O = Z ST, t= - t  (1) (2.8) 

Za 

and 

1 - s )  45 
0 ~ ,  zi = ~-~ t (s) + --. �9 (2.9) 

For the quantity W = In Z / N ,  the formula (2.7) leads to 

N - N 2 z a - in 2a, b \ 2N 7 4 
+ln (1- 0 - "  + 24,<'>(1 0-3+ ]. (2.10) 

In the right-hand side of  formula (2.10), it is apparent that the first two terms are of order 1 

(after rescaling z a = N T a )  and that the_third term is of order 1/N 2 . Furthermore, this term contains 

all terms of order 1 I N  2. T h e  same is true for the fourth term in the order 1/N 4 . This is a crucial 

difference with the case of orthogonal groups treated in Section 1. Indeed in the latter case, the 

1/c  i corrections to the large N limit of W I N  are of order 1/N only, and to our knowledge, the 

resumation of all 1 I N  contributions is not known. 

3. THE SU(N) CASE 

For the purpose of completeness, we would like to present the application of the technique used 

above to study the weak coupling behaviour of the one link-integral on SU(N). It is defined 

according to 

Z(d' J+) = / dUexp  h(UY + + U+J). (3.1) 
J s  U(N) 
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In [1], the authors stressed that Z depends only on the eigenvalues o f J J  § (see (2.2)) and on the 

determinant of  J. 

Z~(J, J+) = Z(z,, O) (3.2) 

e 2 / N  _ det J 
det J + '  (3.3) 

Then, according to Brower et al., the function Z takes the form 

c m  

Z~(zi, C)= Z e~W~ wA 
t = - o~ A ( 3 . 4 )  

with 

W l = det [ Z / - 1 .  I/_ l_l(Zi)] .  (3.s) 

In the same spirit as in the preceding section, we have computed the weak coupling expansion 

(at least the first four terms) of  W l and we have found [12] (see the definitions in (2.8) and (2.11)) 

- - =  _ _ 9 1 - s  

A 24 
(3.6) 

From (3.4) - (3.6) i t  is apparent that the large N limit of U(N) is factorized out of  Z and that the 

remaining factor takes into account the finite N effects and the constraint due to the determinant 

[since we are in SU(N)]. In particular, the first term in the bracket of  (3.6) (term of order iV) can 

be summed in (3.4) 

( 1  - -  01212 e 'NIO = ~ e - k ?  e iNlO (3.7) 
1 l 

= 1 In (1 -- t) and we can recognize the Villain action for a U(N) gauge theory in the continuum. i f k  

A P P E N D I X  

Here we want to present a few exact results that we have obtained for the function (1.1) for some 
special value of N. 

0(1) It is very easy to solve the ordinary differential Equation (1.8) leading to 

Z = e c. (A1) 

0(2) With some effort, one recognizes that Equation (1.8) is solved (with proper boundary 
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conditions) by 

Z = Io(Cl + c2). (A2) 

Another soluble case occurs when the souEce matrix C~ is a projector (only one eigenvalue is 

nonzero). Then Equation (1.8) reduces to 

32 N 3Z 
_ _  = 1_ Z ( A 3 )  

and the solution is 

Z = F {N- I I(NI2)- ' (c) = X/~. (A4) 
\ 2 ] (c/2) (~v/2)- 1, c 

0(3) This case is important because it corresponds to the integration for the adjoint representa- 

tion of $0(2) [because of the SU(2) - SO(3) isomorphism]. We have a closed form when C is 

proportional to the identity 

f d V e x p  ch V = [I0 (2c) - 11 (2c)] e c. (A5) 

For general values of c, the integralhas been studied in [13]. Here we present its weak coupling 

expansion which has been obtained independently. The result is: 

I 1 exp(cl +c2 +c3) 1 + ~ 6nI n 
Z(ci)=x/-(cl +c2)(cl +c3)(c2 +c3) n--1 

(A6) 

fin = ( -1 )  n21-n 
1 r ( n  + _3 ) 

2 

n!(2n + 1)!! r(-n+�89 (A7) 

n p 

In= Z 
p = O  q = 0  

?l p . .  CpCq(2q - 1)!!(2p - 2q - 1)!!(2n - 2p - 1) T~ 

(c2 +c3)q(el +c3)P-q(cx+c 2) n - p  
(A8) 

This result can be checked to be in agreement with (A5) for cl = c2 = c3 = c. 
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