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Foreword

What Minuit is intended to do.

Minuit is conceived as a tool to find the minimum value of a multi-parameter function and analyze
the shape of the function around the minimum. The principal application is foreseen for statistical
analysis, working on chisquare or log-likelihood functions, to compute the best-fit parameter values and
uncertainties, including correlations between the parameters. It is especially suited to handle difficult
problems, including those which may require guidance in order to find the correct solution.

What Minuit is not intended to do.

Although Minuit will of course solve easy problems faster than complicated ones, it is not intended for
the repeated solution of identically parametrized problems (such as track fitting in a detector) where a
specialized program will in general be much more efficient.

Further remarks.

In this manual examples are in and strings to be input by the user are . In
the index the page where a routine is defined is in bold, page numbers where a routine is referenced are
in normal type. In the description of the routines a following the name of a parameter indicates that
this is an output parameter. If another precedes a parameter in the calling sequence, the parameter in
question is both an input and output parameter.
This document has been produced using LATEX [1] with the style option, developed at CERN. A
compressed PostScript file , containing a complete printable version of this manual, can
be obtained from any CERN machine by anonymous ftp as follows (commands to be typed by the user
are underlined):
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Chapter 1: Minuit Basic Concepts.

1.1 The Organization of Minuit.

The Minuit package acts on a multiparameter Fortran function to which we give the generic name ,
although the actual name may be chosen by the user. This function must be defined and supplied by the
user (or by an intermediate program such as HBOOK[2] or PAW[3], in case Minuit is being used under
the control of such an intermediate program). The value of will in general depend on one or more
variable parameters whose meaning is defined by the user (or by the intermediate program), but whose
trial values are determined by Minuit according to what the user requests should be done to (usually
minimize it).
To take a simple example, suppose the problem is to fit a polynomial through a set of data points. Then
the user would write an which calculates the chisquare between a polynomial and the data; the
variable parameters of would be the coefficients of the polynomials. Using Minuit commands, the
user would request Minuit to minimize with respect to the parameters, that is, find those values of
the coefficients which give the lowest value of chisquare.
The user must therefore supply, in addition to the function to be analyzed, a set of commands to instruct
Minuit what analysis is wanted. The commands may be given in several different forms:

– As a data file, corresponding to the traditional “data cards”, for batch processing;
– Typed in at execution time at a terminal, for interactive running;
– Coded in Fortran in the calling program, which allows looping, conditional execution, and all the
other possibilities of Fortran, but not interactivity, since it must be compiled before execution. This
is sometimes known as runningMinuit in “slave mode”. HBOOK and PAW useMinuit in this way.

It is also possible to mix any of the above forms, for example starting off a fit with a standard command
file, then turning it over to the interactive user for the final command steps.

1.2 Internal and External Parameters.

Each of the parameters to is defined by the user as belonging to one of the following types:

Freely variable: allowed to take on any value.
Variable with limits: allowed to vary only between two limits specified by the user.
Fixed: originally defined as variable, but now taking on only the value the parameter

had at the moment it was fixed, or a value later assigned by the user.
Constant: taking on only one value as specified by the user.
Undefined: never defined by user.

The user, in , must of course be able to “see” all types of defined parameters, and he therefore has
access to what we call the external parameter list, that is, the parameters as he defined them. On the other
hand, the internal Minuit minimizing routines only want to “see” variable parameters without limits, and
so they have access only to the internal parameter list which is created from the external list by the
following transformation:

(1) Squeeze out all parameters that are not variable.

1



2 Chapter 1. Minuit Basic Concepts.

(2) Transform all variable parameters with limits, so that the transformed parameter can vary without
limits. (See the next section for details concerning this transformation.) Because this transformation
is non-linear, it is recommended to avoid putting limits on parameters where they are not needed.

As an example, suppose that the user has defined the following parameters:

– Parameter 1, constant.
– Parameter 3, freely variable.
– Parameter 10, variable with limits.
– Parameter 11, constant.
– Parameter 22, freely variable.
– All others undefined.

Then the internal parameter list would be as follows:

– Internal parameter 1 = external parameter 3.
– Internal parameter 2 = external parameter 10, transformed appropriately.
– Internal parameter 3 = external parameter 22.

In the above example, Minuit considers that the number of external parameters is 22 (the highest external
parameter number defined), and the number of internal parameters is 3. The latter number is passed
as to . This is the number which determines, for example, the size of the error matrix of the
parameters, since only variable parameters have errors.
An important feature of Minuit is that parameters are allowed to change types during a Minuit run.
Several Minuit commands are available to make variable parameters fixed and vice-versa; to impose,
change, or remove limits from variable parameters; and even to define completely new parameters at any
time during a run. In addition, some Minuit routines (notably the error analysis) cause one or
more variable parameters to be temporarily fixed during the calculation. Therefore, the correspondence
between external and internal parameter lists is in general a dynamic one, and the value of is not
necessarily constant.

1.2.1 The transformation for parameters with limits.

For variable parameters with limits, Minuit uses the following transformation:

so that the internal value can take on any value, while the external value can take on values only
between the lower limit and the upper limit . Since the transformation is necessarily non-linear, it
would transform a nice linear problem into a nasty non-linear one, which is the reason why limits should
be avoided if not necessary. In addition, the transformation does require some computer time, so it slows
down the computation a little bit, and more importantly, it introduces additional numerical inaccuracy
into the problem in addition to what is introduced in the numerical calculation of the value. The
effects of non-linearity and numerical roundoff both become more important as the external value gets
closer to one of the limits (expressed as the distance to nearest limit divided by distance between limits).
The user must therefore be aware of the fact that, for example, if he puts limits of on a parameter,
then the values and will be indistinguishable to the accuracy of most machines.
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The transformation also affects the parameter error matrix, of course, so Minuit does a transformation
of the error matrix (and the “parabolic” parameter errors) when there are parameter limits. Users
should however realize that the transformation is only a linear approximation, and that it cannot give a
meaningful result if one or more parameters is very close to a limit, where . Therefore,
it is recommended that:

– Limits on variable parameters should be used only when needed in order to prevent the parameter
from taking on unphysical values.

– When a satisfactory minimum has been found using limits, the limits should then be removed if
possible, in order to perform or re-perform the error analysis without limits.

Further discussion of the effects of parameter limits may be found in the last chapter.

1.3 Minuit Strategy.

At many places in the analysis of the user function, Minuit must decide whether to be “safe” and waste a
few function calls in order to knowwhere it is, or to be “fast” and attempt to get the requested results with
the fewest possible calls at a certain risk of not obtaining the precision desired by the user. In order to
allow the user to influence these decisions, there is an internalMinuit parameter which can be set
by the user through the command . In the current release, this parameter can take on three
integer values (0, 1, 2), and the default value is 1. Value 0 indicates to Minuit that it should economize
function calls; it is intended for cases where there are many variable parameters and/or the function takes
a long time to calculate and/or the user is not interested in very precise values for parameter errors. On
the other hand, the value 2 indicates that Minuit is allowed to waste function calls in order to be sure that
all values are precise; it is intended for cases where the function is evaluated in a very short time and/or
where the parameter errors must be calculated reliably

1.4 Parameter Errors.

Minuit is usually used to find the “best” values of a set of parameters, where “best” is defined as those
values which minimize a given function, . The width of the functionminimum, or more generally, the
shape of the function in some neighbourhood of the minimum, gives information about the uncertainty
in the best parameter values, often called by physicists the parameter errors. An important feature of
Minuit is that it offers several tools to analyze the parameter errors.

1.4.1 FCN Normalization and the ERRor definition.

Whatever method is used to calculate the parameter errors, theywill depend on the overall (multiplicative)
normalization of , in the sense that if the value of is everywhere multiplied by a constant , then
the errors will be decreased by a factor . Additive constants do not change the parameter errors, but
may imply a different goodness-of-fit confidence level.
Assuming that the user knows what the normalization of his means, and also that he is interested in
parameter errors, the command allows him to define what he means by one “error”, in
terms of the change in value which should be caused by changing one parameter by one “error”. If the

is the usual chisquare function (defined below), then should be set to 1.0 (the default value
anyway) if the user wants the usual one-standard-deviation errors. If is a negative-log-likelihood
function, then the one-standard-deviation value for is 0.5. If is a chisquare, but the user
wants two-standard-deviation errors, then should be = 4.0, etc.
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Note that in the usual case where Minuit is being used to perform a fit to some experimental data, the
parameter errors will be proportional to the uncertainty in the data, and therefore meaningful parameter
errors cannot be obtained unless the measurement errors of the data are known. In the common case of a
least-squares fit, is usually defined as a chisquare:

(1.1)

where is the vector of free parameters being fitted, and the are the uncertainties in the individual
measurements . If these uncertainties are not known, and are simply left out of the calculation, then
the fit may still have meaning, but not the quantitative values of the resulting parameter errors. (Only the
relative errors of different parameters with respect to each other may be meaningful.)
If the are all overestimated by a factor , then the resulting parameter errors from the fit will be
overestimated by the same factor .

1.4.2 The Error Matrix.

The Minuit processors and normally produce an error matrix. This matrix is the inverse
of the matrix of second derivatives of , transformed if necessary into external coordinate space ,
and multiplied by the square root of . Therefore, errors based on the Minuit error matrix take
account of all the parameter correlations, but not the non-linearities. That is, from the error matrix alone,
two-standard-deviation errors are always exactly twice as big as one-standard-deviation errors.
When the error matrix has been calculated (for example by the successful execution of a command

or ) then the parameter errors printed by Minuit are the square roots of the diagonal
elements of this matrix. The commands and allow the user to
see the off-diagonal elements as well. The command causes Minuit to calculate and
print out the eigenvalues of the error matrix, which should all be positive if the matrix is positive-definite
(see below on Migrad and positive-definiteness).
The effect of correlations on the individual parameter errors can be seen as follows. When parameter
is ed, Minuit inverts the error matrix, removes the row and column corresponding to parameter
, and re-inverts the result. The effect on the errors of the other parameters will in general be to make
them smaller, since the component due to the uncertainty in parameter has now been removed. (In the
limit that a given parameter is uncorrelated with parameter , its error will not change when parameter
is fixed.) However the procedure is not reversible, since Minuit forgets the original error matrix, so if

parameter is then d, the error matrix is considered as unknown and has to be recalculated with
appropriate commands.

1.4.3 MINOS Errors.

TheMinuit processor was probably the first, and may still be the only, generally available program
to calculate parameter errors taking into account both parameter correlations and non-linearities. The

error intervals are in general assymmetric, and may be expensive to calculate, especially if there
are a lot of free parameters and the problem is very non-linear.

The internal error matrix maintained by Minuit is transformed for the user into external coordinates, but the numbering
of rows and columns is of course still according to internal parameter numbering, since one does not want rows and columns
corresponding to parameters which are not variable. The transformation therefore affects only parameters with limits; if there
are no limits, internal and external error matrices are the same.
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can only operate after a good minimum has already been found, and the error matrix has been
calculated, so the command will normally follow a command. The error for a
given parameter is defined as the change in the value of that parameter which causes to increase by
the amount , where is the minimum of with respect to all other free parameters, and is the
ERRordef value specified by the user (default = 1.).
The algorithm for finding the positive and negative errors for parameter consists of varying
parameter , each time minimizing with respect to all the other variable parameters, to find
numerically the two values of parameter for which the minimum of takes on the values ,
where is the minimum of with respect to all parameters. In order to make the procedure
as fast as possible, uses the error matrix to predict the values of all parameters at the various
sub-minima which it will have to find in the course of the calculation, and in the limit that the problem is
nearly linear, the predictions of will be nearly exact, requiring very few iterations. On the other
hand, when the problem is very non-linear (i.e., is far from a quadratic function of its parameters),
that is precisely the situation when is needed in order to indicate the correct parameter errors.

1.4.4 Contour Plotting

Minuit currently offers two very different procedures for finding contours. They will be identified
by the corresponding command names: and .

1.4.4.1 CONtour

This procedure is designed for a lineprinter or alphanumeric terminal as output device, and gives a static
picture of as function of the two parameters specified by the user, that is, all the other variable
parameters (if any) are considered as temporarily fixed at their current values. First a range is chosen,
by default two current standard deviations on either side of the current best value of each of the two
parameters, and a grid size n is chosen, by default 25 by 25 positions for the full range of each parameter.
Contour zero is defined as the current best function value (presumably the minimum), and then the
contour is defined as where has the value . The procedure then simply evaluates
at the four corners of each of the grid positions (which makes evaluations) to determine

whether the contour passes through it. The method, although not very efficient or precise, is very
robust, and capable of revealing unexpected multiple valleys.

1.4.4.2 MNContour

The contour calculated by is dynamic, in the sense that it represents the minimum of
with respect to all the other parameters (if any). In statistical terms, this means that
takes account of the correlations between the two parameters being plotted, and all the other variable
parameters, using a procedure analogous to that of . (If this feature is not wanted, then the other
parameters must be ed before calling .) provides the actual coordinates of the
points around the contour, suitable for plotting with a graphics routine or by hand. The points are given
in counter-clockwise order around the contour. Only one contour is calculated per command (or Fortran
call), and the level is . where is the specified by the user, or 1.0 by default. The
number of points to be calculated is chosen by the user (Default is 20 for the data-driven mode.). As a
by-product, provides the errors of the two parameters in question, since these are just
the extreme points of the contour (Use to see them). In command-driven mode, a rough
(alphanumeric, not graphic) plot of the points is given (if ) and the numerical values of
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the coordinates are printed (if ). In Fortran-callable mode, the user gets Fortran access
to the vector of point coordinates through .



Chapter 2: Minuit Installation.

2.1 Minuit Releases.

Minuit has been extensively revised in 1989, but the usage is largely compatible with that of older versions
which have been in use since before 1970. Users familiar with older releases, who have not yet used
releases from 1989 or later, must however read this manual, in order to adapt to the few changes as well
as to discover the new features and easier ways of using old features, such as free-field input.

2.2 Minuit Versions.

The program is entirely in standard portable Fortran 77, and requires no external subroutines except those
defined as part of the Fortran 77 standard and one logical function . The only difference between
versions for different computers, apart from , is the floating point precision (see heading below).
As with previous releases, Minuit does not use a memory manager. This makes it easy to install and
independent of other programs, but has the disadvantage that both the memory occupation and the
maximum problem size (number of parameters) are fixed at compilation time. The old solution to this
problem, which consisted of providing “long” and “short” versions, has proved to be somewhat clumsy
and anyway insufficient for really exceptional users, so it has been abandoned in favour of a single
“standard” version.
The currently“standard” version of Minuit will handle functions of up to 100 parameters, of which not
more than 50 can be variable at one time. Because of the use of the statement in the Fortran
source, redimensioning for larger (or smaller) versions is very easy (although it will help to have a
source code manager or a good editor to propagate the modified statement through all the
subroutines, and of course it implies recompilation). The definition of what is “standard” may well
change in the light of experience (it was 35 instead of 50 variable parameters for release 89.05), and it is
likely that different installations will wish to define it differently according to their own applications. In
any case, the dimensions used at compilation time are printed in the program header at execution time,
and the program is of course protected against the user trying to define too many parameters. The user
who finds that the version available to him is too small (or too big) must try to convince his computer
manager to change the installation default or to provide an additional special version, or else he must
obtain the source and recompile his own version.

2.3 Interference with Other Packages

The newMinuit has been designed to interfere as little as possiblewith other programs or packages which
may be loaded at the same time. Thus it uses no memory manager or other external subroutines (except

), all its own subroutine names start with the letters (except Minuit and
the user written routines), all block names start with the characters , and the user should not
need to use explicitly any Minuit blocks.
In addition, more than one different functions can be minimized in the same execution module, provided
the functions have different names, and provided one minimization and error analysis is completely
finished before the next one begins.

is available from the CERN Program Library for all common computers, and in the worst case can be replaced by
a returning a value of or depending on whether or not Minuit is being used interactively.

7



8 Chapter 2. Minuit Installation.

2.4 Floating-point Precision

It is recommended for most applications to use 64-bit floating point precision, or the nearest equivalent on
any particular machine. Thismeans that the standardMinuit installed onVax, IBM andUnixworkstations
will normally be the version,while onCDCandCray itwill be .
The arguments of the user’s must of course correspond in type to the declarations compiled into the
Minuit version being used. The same is true of course for all floating-point arguments to any Minuit
routines called directly by the user in Fortran-callable mode. Furthermore, Minuit detects at execution
time the precision with which it was compiled, and expects that the calculations inside will be
performed approximately to the same accuracy. (This accuracy is called and is printed in the
header produced byMinuit when it begins execution.) If the user foolsMinuit by using a double precision
version but making internal or computations in single precision, Minuitwill interpret roundoff
noise as significant andwill usually either fail to find aminimum, or give incorrect values for the parameter
errors. It is therefore recommended, when using double precision ( ) Minuit, to make sure all
computations in and (if used), as well as all subroutines called by and , are ,
by including the appropriate declarations in and all user subroutines called by . If for
some reason the computations cannot be done to a precision comparable with that expected by Minuit,
the usermust inform Minuit of this situation with the command.
Although 64-bit precision is recommended in general, the new Minuit is so careful to use all available
precision that in many cases, 32 bits will in fact be enough. It is therefore possible now to envisage
in some situations (for example on microcomputers or when memory is severely limited, or if 64-bit
arithmetic is very slow) the use of Minuit with 32- or 36-bit precision. With reduced precision, the user
may find that certain features sensitive to first and second differences ( , , ) do
not work properly, in which case the calculations must be performed in higher precision.



Chapter 3: How to Use Minuit

3.1 The Function FCN.

The user must always supply a Fortran subroutine which calculates the function value to be minimized
or analyzed.

FCN

Input parameters
number of currently variable parameters.
vector of (constant and variable) parameters.
Indicates what is to be calculated (see example below).
Name of utilitary routine (if needed, it must be declared and provided by the user).

Output parameters
The calculated function value.
The (optional) vector of first derivatives).

Note that when Minuit is being used through an intermediate package such as HBOOK or PAW, then the
may be supplied by the this package.

Example of routine

The name of the subroutine may be chosen freely (in documentation we give it the generic name )
and must be declared in the user’s program which calls Minuit (in data-driven mode) or calls

9



10 Chapter 3. How to Use Minuit

Minuit subroutines (in Fortran-callable mode). The meaning of the parameters is of course defined
by the user, who uses the values of those parameters to calculate his function value. The starting values
must be specified by the user (either by supplying parameter definitions from a file, or typing them
at the terminal, in data-driven mode; or by calling subroutine in Fortran-callable mode), and
later values are determined by Minuit as it searches for the minimum or performs whatever analysis is
requested by the user. represents the name of a function or subroutine which may be defined and
supplied by the user and called from . If the user does not use the feature, the last argument
may be given as zero, but if used, the name of must be declared and a subprogram of
that name must be supplied at loading time.
It is possible, by giving them different names, to analyze several different s in one job. However, one
analysis must be completed before the next is started. In order to avoid interference between the analyses
of two different s, the user should call Minuit (in data-driven mode) or (in Fortran-callable
mode) each time a new is to be studied.

3.2 Running Minuit in Data-drivenMode.

Minuit can be run in two different modes: Data-driven mode means that the user drives Minuit with
data, either typed interactively from a terminal or from a data file in batch; and Fortran-callable mode
means that Minuit is driven directly from Fortran subroutine calls, without data. To some extent, the
two modes may also be mixed. This section describes the first mode, and is valid for both interactive
and batch running. The differences between interactive and batch are described in a separate subsection
below.
In data-driven mode, the user must supply, in addition to the subroutine , a main program which
includes the following statements (the statements in upper case are required, those given in lower case
are optional):

Example of main program when usingMinuit in data driven mode

The name of may be chosen freely, and is communicated to Minuit as its first argument. is
the generic name of a function or subroutine which the user may optionally call from , and if he does
call such a routine, he must declare it external and communicate its name to Minuit as well. If is
not used, then the second argument may be put equal to , and need not be declared ; if
is declared , it must be supplied in the loading process.
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MINTIO

Action: The purpose of is to communicate to Minuit the I/O units.

Input parameters
Fortran unit number for reading (default 5).
Fortran unit number for writing (default 6).
Fortran unit number for saving (default 7).

If the default values are acceptable, then it is not necessary to call . It is the user’s responsibility
that the I/O units are properly opened for the appropriate operations.

Note

In data-driven mode, that is with , you should not call , since Minuit takes care of
all initialization. To change unit numbers, call before calling .
In order that control returns to the user program after , the last command in the corre-
spondingData Block should be . If the last command is or , then Minuit will execute a
Fortran , and if the last command is , Minuit will read a new Data Block from the current input
unit.

3.2.1 Data to drive Minuit

In data-driven mode, either interactively or in batch, Minuit reads the following data provided by the
user:

– Title: (a string of 50 characters or less) which can be chosen freely by the user, to help identify
the job.

– Parameter definitions: for each parameter one record giving:

(1) The parameter number. This is the index in the array by which the user function
will access the value of the parameter.

(2) The parameter name. A string of ten characters to help the user in reading the Minuit
output.

(3) The starting value of the parameter.
(4) The starting step size, or expected uncertainty in this parameter, if it is to be a variable

parameter. Otherwise blank or zero if the value is to be constant.
OptionalThe lower bound (limit) below which the parameter value must not vary.
OptionalThe upper bound (limit) above which the parameter value must not vary.

Normally the user should not specify limits on the parameters, that is both should be left blank.
If one limit is specified, then BOTH must be specified. The properties of limits are explained
elsewhere in this document.
The format of the parameter definitions may be either fixed-field (each item in a field of width
ten columns), or in free-field format. In the free-field format, items are separated by blanks or
one comma, and the parameter name must be given between single quotes. The program assumes
free-field format if it finds two single quotes in the line. Parameter names will be blank-padded or
truncated to be ten characters long.
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– A blank record: indicates the end of parameter definitions.
– If the user reads input data from the same input stream as the Minuit data (the default stream
is ), then the data should appear here.

– Minuit commands: these specify actions which should be performed byMinuit. Commands must
not contain leading or embedded blanks, but may be truncated to three characters, and may be
given in upper or lower case. Some commands have numerical arguments, and these may be given
in free-field format, separated by blank(s) or one comma . The list of recognized commands is
given and explained below. The command causes Minuit to write to the output stream a list
of currently recognized commands. The command lists the available and
commands.

Any or all of the above data read by Minuit can reside on one or more different files, and Minuit can be
instructed to switch to reading a different file with the command. Optionally, the title record
may be preceeded by a record beginning with the characters , and the parameter definitions
may be preceeded by a record beginning with the characters . It is in fact recommended
always to include these optional records when preparing a data file, since the file can then be read at any
time (not just at the beginning of a Minuit run) and will always be interpreted correctly by Minuit.

Example of a typical Minuit data set

3.2.2 Batch and interactive running.

In its initialization phase, Minuit attempts to determine whether or not it is running interactively, by
calling the logical function , a routine in the CERN Program Library which can be provided for
all commonly used computers. For our purposes, we define “running interactively” as meaning that input
is coming from a terminal under the control of an intelligent being, able to make decisions based on the

In older versions of Minuit, there was a special format for the command, when specifying a list of parameters; the
new Minuit reads the command with the same free-field format as the other commands, so if parameter numbers are
specified, they must now be separated by a blank or comma.



3.3. Running Minuit in Fortran-callable mode. 13

output he receives at the terminal. It is not always easy for to know whether this is the case, so,
depending on your operating system, Minuit can be fooled in certain cases. When this happens, the user
can always override the beliefs of with the commands and . The
command informs the user of the current mode.
According to whether or not it believes it is running interactively, Minuit behaves differently in the
following ways:

– If interactive, the user is prompted before each data record is read.
– If interactive, Minuit recovers from many error conditions and prompts the user to enter correct
data or to specify additional required input. If the same error conditions occur in batch mode,
the program either exits (if no corrective action seems possible) or ignores the incorrect data (for
example, a command it cannot interpret) and continues.

– The default page size for output is a typical terminal dimension (80 by 24) if interactive, and a
typical printed page size (120 by 56) if batch, but these can be overridden with the commands

and .

When an interactive user requests Minuit to read further input from an external file (the
command), then further input is considered to be temporarily in batch mode, until input reverts to the
primary input stream.

3.3 Running Minuit in Fortran-callable mode.

The followingMinuit subroutines are provided in order to allow the user to communicate withMinuit and
perform all Minuit functions (define parameters, execute commands, etc.) directly from Fortran through
subroutine calls. In the following list of subroutines, output arguments are indicated by appending a star
to its name. It should also be noted that for the Double Precision version of Minuit (recommended for

all 32-bit machines such as IBM, Vax, Unixworkstations, etc.), all the arguments given belowmust
be declared .

3.3.1 MNINIT: Initialize Minuit

MNINIT

Input parameters:
Unit number for input to Minuit.
Unit number for output from Minuit.
Unit number for use of the SAVE command.

3.3.2 MNSETI: Specify a title for a problem

MNSETI

Input parameter:
Character string of up to 50 characters containing an identification text for the present job or
fit.
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3.3.3 MNPARM: Define a parameter, assigning values from variables

MNPARM

Input parameters:
Parameter number as referenced by user in .
Character string of up to 10 characters containing the name which the user assigned to the
given parameter.
Starting value
Starting step size or approximate parameter error.
Lower bound (limit) on parameter value, if any (see below).
Upper bound (limit) on parameter value, if any (see below).

Output parameter:
Error return code: if no error, if request failed.

If , then the parameter is considered unbounded, which is recommended unless limits are
needed to make things behave well.

3.3.4 MNPARS: Define a parameter, assigning values from character string

Subroutine MNPARS defines a new (or redefines an old) parameter specifying values for its number,
name, starting value, step size, and limits if any. All these values are given in one character string as if
it was being read from the input stream. It can therefore be used in place of MNPARM if the character
string format is more convenient than the calling sequence of MNPARM.
Calling sequence:

MNPARS

Input parameter:
String specifies the parameter definition in the usual Minuit format, as on a data record (See
3.2.1). The fields are in the same order as the arguments to MNPARM

Output parameter:
Output condition

Possible values of output condition:
all OK
error, attempt to define parameter is ignored
end of parameter definitions (parameter number zero)

Example:
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3.3.5 MNEXCM: Execute a Minuit command

MNEXCM

Input parameters:
Name of the function being analyzed (to be declared )
Character string containing the name of the Minuit command to be executed (see below).
Array of dimension , containing the numeric arguments to the command (if any),
Number of arguments specified ( MAXARG),
Name of a function called by (or if not used). If used this function must be declared

.
Output parameter:

Error return code: if the command was executed normally, otherwise.

Executing a command by calling has exactly the same effect as reading the same command in
data-driven mode, except that a few commands would make no sense and are not available in Fortran-
callable mode (e.g. ). The other difference is that control always returns to the calling
routine from , even after commands , , and .
Warning: If there is only one argument, ARGLIS may be given as a numeric constant, but if you do this
make sure the constant is of the right data type, for example 0.5D0, not 0.5 if you are in the usual
Double Precision mode. To avoid this problem, it may be more convenient to use MNCOMD instead of
MNEXCM.

3.3.6 MNCOMD: Execute a Minuit command specified as a character string

Subroutine MNCOMD causes the execution of the Minuit command specified as the second argument.
It therefore works like MNEXCM, except that it accepts the entire command with arguments as one
character string. This is more convenient in many cases and avoids problems of word length matching
(DOUBLE PRECISION constants).

MNCOMD

Input parameters:
Name of the function being analyzed (to be declared )
The full Minuit command with arguments (CHARACTER)
Name of a function called by (or if not used). If used this function must be declared

.
Output parameter:

Error return code: if the command was executed normally, otherwise.

Some abnormal conditions:
command was blank, ignored
command line was unreadable, ignored
command was unknown, ignored
abnormal termination (e.g., MIGRAD not converged)
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3.3.7 MNPOUT: Get the current value of a parameter

This routine is the inverse of and can for instance be used after a fit.

MNPOUT

Input parameter:
Parameter number as referenced by user in and about which information is required.

Output parameters:
Character string of up to 10 characters containing the name which the user assigned to the
given parameter.
Current parameter value (fitted value if fit has converged),
Current estimate of parameter uncertainty (or zero if constant)
Lower limit on parameter value, if any (otherwise zero).
Upper limit on parameter value, if any (otherwise zero).
Internal parameter number if parameter is variable, or zero if parameter is constant, or negative
if parameter is undefined.

3.3.8 MNSTAT: Get the current status of minimization

MNSTAT

Output parameters:
The best function value found so far
The estimated vertical distance remaining to minimum
The value of defining parameter uncertainties
The number of currently variable parameters
The highest (external) parameter number defined by user
A status integer indicating how good is the covariance matrix:

Not calculated at all
Diagonal approximation only, not accurate
Full matrix, but forced positive-definite
Full accurate covariance matrix (After , this is the indication of normal conver-
gence.)

3.3.9 MNEMAT: Get the current value of the covariance matrix

MNEMAT

Input parameter:
Integer variable specifying the number of rows and columns the suer has reserved in
to store the matrix elements. should be at least as large as the number of parameters
variable at the time of the call, otherwise the user will get only part of the full matrix.

Output parameter:
Array declared as which is to be filled with the (external)
covariance matrix.
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3.3.10 MNERRS: Access current parameter errors

MNERRS

Input parameter:
Parameter number. If , this is taken to be an external parameter number; if , it is
the negative of an internal parameter number.

Output parameters:
The positive error of parameter .
The negative error (a negative number).
The “parabolic” parameter error, from the error matrix.
The global correlation coefficient for parameter . This is a number between zero and one
which gives the correlation between parameter and that linear combination of all other
parameters which is most strongly correlated with .

Note that this call does not cause the errors to be calculated, itmerely returns the current existingvalues. If
any of the requested values has not been calculated, or has been destroyed (for example, by a redefinition
of parameter values) returns a value of zero for that argument. Thus the call to will
normally follow the execution of commands , , , and/or .

3.3.11 MNCONT: Find a function contour with the MNContour method

MNCONT

Input parameters:
Name of the function being treated (to be declared )
Parameter numbers with respect to which the contour is to be determined (external).
The number of points required on the contour ( ).
Name of a function called by (or =0 if not used). If used this function must be declared

.
Output parameters:

Array of x-coordinates of contour points with values for parameter . It must be declared
with a .
Array of y-coordinates of contour points with values for parameter . It must be declared
with a .
The number of points actually found on the contour. If all goes well, this will be equal to ,
but it can be negative (if the input arguments are not valid), or zero if less than four points have
been found, or less than if the program could not find points.

Note that alternatively can be calculated by calling to issue the command,
but then the user does not have Fortran access to the actual point coordinates and .
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3.3.12 MNINTR: Switch to command-reading mode

This facility can be useful when one wants to continue interactively.

MNINTR

Input parameters:
Name of the function being treated (to be declared )
Name of a function called by (or if not used). If used this function must be declared

.

The call to will causeMinuit to read commands from the unit (originally specified by the user
in his call to , is usually 5 by default, which in turn is usually the terminal by default). Minuit
then reads and executes commands until it encounters a command , , , or , or an
end-of-file on input (or an unrecoverable error condition while reading or trying to execute a command),
in which case control returns to the program which called .

3.3.13 MNINPU: Set logical unit number for input

Sets logical unit number of input unit from which Minuit will read the next command.

MNINPU

Input parameter:
The I/O unit number, which must be a valid unit, opened for reading (Minuit makes no checks
at this level and will not attempt to open any files.) If NUNIT is specified as zero, Minuit
returns to reading the previous unit (for this reason, Minuit has to store the unit numbers in an
internal buffer).

Output parameter:
returned as zero unless Minuit’s internal buffer which stores unit numbers is full, which is a
fatal error.
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In data-driven mode, Minuit accepts commands in the following format:

command

One of the commands listed below,
Numerical values of required arguments, if any.
] Numerical values of optional arguments, if any.

The arguments (if any) are separated from each other and from the command by one or more blanks or
a comma. Commands may be given in upper or lower case, and may be abbreviated, usually to three
characters. The shortest recognized abbreviations are indicated by the capitalized part of the commands
listed below. Examples of valid commands are:

In Fortran-callable mode, all the same commands (with a few obvious exceptions as indicated) can be
executed by passing the command-string and arguments to Minuit in a statement.

List of Minuit commands

CALl fcn

Instructs Minuit to call subroutine with the value of . (The actual name of the
subroutine called is that given by the user in his call to Minuit or ; the name given in this
command is not used.) If , Minuit assumes that a new problem is being redefined, and it
forgets the previous best value of the function, covariance matrix, etc. This command can be used to
instruct the user function to read new inputdata, recalculate constants, or otherwisemodify the calculation
of the function.

CLEar

Resets all parameter names and values to undefined. Must normally be followed by a
command or equivalent, in order to define parameter values.

CONtour

Instructs Minuit to trace contour lines of the user function with respect to the two parameters whose
external numbers are and . Other variable parameters of the function, if any, will have
their values fixed at the current values during the contour tracing. The optional parameter (default
value 2.) gives the number of standard deviations in each parameter which should lie entirely within the
plotting area. Optional parameter (default value 25 unless page size is too small) determines
the resolution of the plot, i.e. the number of rows and columns of the grid at which the function will be
evaluated. [See also .]

19
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END

Signals the end of a data block (i.e., the end of a fit), and implies that execution should continue, because
another Data Block follows. AData Block is a set of Minuit data consistingof (1) A Title, (2) One or more
Parameter Definitions, (3) A blank line, and (4) A set of Minuit Commands. The command is used
when more than one Data Block is to be used with the same function. The command first causes
Minuit to issue a with , in order to allow to perform any calculations associated
with the final fitted parameter values, unless a command has already been executed at the
current value. The obsolete command is the same as the command.

EXIT

Signals the end of execution. The command first causes Minuit to issue a with ,
in order to allow to perform any calculations associated with the final fitted parameter values, unless
a command has already been executed at the current value. Then it executes a Fortran

.

FIX

Causes parameter(s) to be removed from the list of variable parameters, and their value(s) will
remain constant during subsequent minimizations, etc., until another command changes their value(s) or
status.

HELP

If there are no arguments, causes Minuit to list the available commands. If argument SET or SHOW is
specified, the list of recognized and commands is displayed. If a command name is specified
as argument, a short explanation of the command syntax is given.

HESse

Instructs Minuit to calculate, by finite differences, the Hessian or error matrix. That is, it calculates
the full matrix of second derivatives of the function with respect to the currently variable parameters,
and inverts it, printing out the resulting error matrix. The optional argument specifies the
(approximate) maximum number of function calls after which the calculation will be stopped.

IMProve

If a previous minimization has converged, and the current values of the parameters therefore correspond
to a local minimum of the function, this command requests a search for additional distinct local minima.
The optional argument specifies the (approximate) maximum number of function calls after
which the calculation will be stopped.

MIGrad

Causes minimization of the function by the method of Migrad, the most efficient and complete single
method, recommended for general functions (see also ). The minimization produces as
a by-product the error matrix of the parameters, which is usually reliable unless warning messages are
produced. The optional argument specifies the (approximate) maximum number of function
calls after which the calculation will be stopped even if it has not yet converged. The optional argument

specifies required tolerance on the function value at the minimum. The default tolerance
is , and the minimization will stop when the estimated vertical distance to the minimum ( ) is less
than (see ).
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MINImize

Causesminimizationof the functionby themethod ofMigrad, as does the command, but switches
to the method if Migrad fails to converge. Arguments are as for . Note that command
requires four characters to be unambiguous with .

MINOs

Causes a Minos error analysis to be performed on the parameters whose numbers are specified.
If none are specified, Minos errors are calculated for all variable parameters. Minos errors may be
expensive to calculate, but are very reliable since they take account of non-linearities in the problem
as well as parameter correlations, and are in general asymmetric. The optional argument
specifies the (approximate) maximum number of function calls per parameter requested, after which
the calculation will be stopped for that parameter.

MNContour

Calculates one function contour of with respect to parameters and , with minimized
always with respect to all other variable parameters (if any). Minuit will try to find points
on the contour (default 20). If only two parameters are variable at the time, it is not necessary to specify
their numbers. To calculate more than one contour, it is necessary to to the appropriate value
and issue the command for each contour desired.

RELease

If is the number of a previously variable parameter which has been fixed by a command:
, then that parameter will return to variable status. Otherwise a warning message is printed

and the command is ignored. Note that this command operates only on parameters which were at one
time variable and have been ed. It cannot make constant parameters variable; that must be done by
redefining the parameter with a command. [See also: .]

REStore

If no is specified, this command restores all previously ed parameters to variable status. If
, then only the last parameter ed is restored to variable status. If code is neither zero nor

one, the command is ignored. [See also: .]

RETurn

Signals the end of a data block, and instructs Minuit to return to the program which called it. The
command first causes Minuit to with , in order to allow to perform any

calculations associated with the final fitted parameter values, unless a command has already
been executed at the current value. Then it executes a Fortran .

SAVe

Causes the current parameter values to be saved on a file in such a format that they can be read in again
as Minuit parameter definitions. If the covariance matrix exists, it is also output in such a format. The
unit number is by default 7, or that specified by the user in his call to or . The user is
responsible for opening the file previous to issuing the command (except where this can be done
interactively).
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SCAn

Scans the value of the user function by varying parameter number , leaving all other parameters
fixed at the current value. If is not specified, all variable parameters are scanned in sequence.
The number of points in the scan is 40 by default, and cannot exceed 100. The range of the
scan is by default 2 standard deviations on each side of the current best value, but can be specified as from

to . After each scan, if a new minimum is found, the best parameter values are retained
as start values for future scans or minimizations. The curve resulting from each scan is plotted on the
output unit in order to show the approximate behaviour of the function. This command is not intended
for minimization, but is sometimes useful for debugging the user function or finding a reasonable starting
point.

SEEk

Causes aMonteCarlominimization of the function, by choosing randomvalues of the variable parameters,
chosen uniformly over a hypercube centered at the current best value. The region size is by default 3
standard deviations on each side, but can be changed by specifying the value of .

SET BATch

Informs Minuit that it is running in batch mode.

SET EPSmachine

InformsMinuit that the relative floating point arithmetic precision is . Minuit determines the
nominal precision itself, but the command can be used to override Minuit’s own determination,
when the user knows that the function value is not calculated to the nominal machine accuracy.
Typical values of are between and .

SET ERRordef

Sets the value of (default value= 1.), defining parameter errors. Minuit defines parameter errors as
the change in parameter value required to change the function value by . Normally, for chisquared fits

, and for negative log likelihood, .

SET GRAdient

Informs Minuit that the user function is prepared to calculate its own first derivatives and return their
values in the array when (see specification of the function ). If is not
specified, Minuit will calculate the derivatives by finite differences at the current point and compare
with the user’s calculation at that point, accepting the user’s values only if they agree. If ,
Minuit does not do its own derivative calculation, and uses the derivatives calculated in .

SET INPut

Causes Minuit, in data-driven mode only, to read subsequent commands (or parameter definitions or title)
from a different input file. If no is specified, reading reverts to the previous input file, assuming
that there was one. If is specified, and that unit has not been opened, then Minuit attempts to
open the file if a name is specified. If running in interactive mode and is not
specified and is not opened, Minuit prompts the user to enter a file name. If the word
is added to the command (note: no blanks between and ), the file is rewound before
reading. Note that this command is implemented in standard Fortran 77 and the results may depend on
the operating system; for example, if a filename is given under VM/CMS, it must be preceeded by a slash.
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SET INTeractive

Informs Minuit that it is running interactively.

SET LIMits

Allows the user to change the limits on one or all parameters. If no arguments are specified, all limits
are removed from all parameters. If alone is specified, limits are removed from parameter

. If all arguments are specified, then parameter will be bounded between
and . Limits can be specified in either order, Minuit will take the smaller as and the
larger as . However, if is equal to , an error condition results.

SET LINesperpage

Sets the number of lines that Minuit thinks will fit on one page of output. The default value is 24 for
interactive mode and 56 for batch.

SET NOGradient

The inverse of , instructs Minuit not to use the first derivatives calculated by the user in
.

SET NOWarnings

Supresses Minuit warning messages. is the default.

SET OUTputfile

Instructs Minuit to write further output to unit .

SET PAGethrow

Sets the carriage control character for “new page” to . Thus the value 1 produces a new page,
and 0 produces a blank line, on some output devices (see command).

SET PARameter

Sets the value of parameter to . The parameter in question may be variable, fixed, or
constant, but must be defined.

SET PRIntout

Sets the print level, determining how much output Minuit will produce. The allowed values and their
meanings are displayed after a command, and are currently :

no output except from commands
minimum output (no starting values or intermediate results)
default value, normal output
additional output giving intermediate results.
maximum output, showing progress of minimizations.

Note: See also the command.
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SET RANdomgenerator

Sets the seed of the random number generator used in . This can be any integer between 10 000 and
900 000 000, for example one which was output from a command of a previous run.

SET STRategy

Sets the strategy to be used in calculating first and second derivatives and in certain minimization
methods. In general, low values of mean fewer function calls and high values mean more
reliable minimization. Currently allowed values are 0, 1 (default), and 2.

SET TITle

Informs Minuit that the next input line is to be considered the (new) title for this task or sub-task. This
is for the convenience of the user in reading his output. This command is available only in data-driven
mode; in Fortran-callable mode use .

SETWARnings

Instructs Minuit to output warning messages when suspicious conditions arise which may indicate
unreliable results. This is the default.

SETWIDthpage

Informs Minuit of the output page width. Default values are 80 for interactive jobs and 120 for batch.

SHOw XXXX

All commands have a corresponding command. In addition, the commands
listed starting here have no corresponding command for obvious reasons. The full list of
commands is printed in response to the command .

SHOw CORrelations

Calculates and prints the parameter correlations from the error matrix.

SHOw COVariance

Prints the (external) covariance (error) matrix.

SHOw EIGenvalues

Calculates and prints the eigenvalues of the covariance matrix.

SHOw FCNvalue

Prints the current value of .

SIMplex

Performs a function minimization using the simplex method of Nelder and Mead. Minimization termi-
nates either when the function has been called (approximately) times, or when the estimated
vertical distance to minimum ( ) is less than . The default value of is

(see ).
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STAndard

Causes Minuit to execute the Fortran instruction where is a subroutine supplied by
the user.

STOP

Same as .

TOPofpage

Causes Minuit to write the character specified in a command (default = 1) to column
1 of the output file, which may or may not position your output medium to the top of a page depending
on the device and system. This command can be expected to work properly only for printed output,
unfortunately it does not solve the IBM terminal problem.



Chapter 5: How to get the right answer fromMinuit.

The goal of Minuit — to be able to minimize and analyze parameter errors for all possible user functions
with any number of variable parameters — is of course impossible to realise, even in principle, in a finite
amount of time. In practice, some assumptionsmust be made about the behaviour of the function in order
to avoid evaluating it at all possible points. In this chapter we give some hints on how the user can help
Minuit to make the right assumptions.

5.1 Which Minimizer to Use.

One of the historically interesting advantages of Minuit is that it was probably the first minimization
program to offer the user a choice of several minimization algorithms. This could be taken as a reflection
of the fact that none of the algorithms known at that time were good enough to be universal, so users were
encouraged to find the one that worked best for them. Since then, algorithms have improved considerably,
but Minuit still offers several, mostly so that old users will not feel cheated, but also to help the occasional
user who does manage to defeat the best algorithms. Minuit currently offers five commands which can
be used to find a smaller function value, in addition to a few others, like and , which
will retain a smaller function value if they stumble on one unexpectedly (or, in the case of ,
hopefully). The commands which can be used to minimize are:

5.1.1 MIGRAD

This is the best minimizer for nearly all functions. It is a variable-metric method with inexact line
search, a stable metric updating scheme, and checks for positive-definiteness. It will run faster if you

and will be more reliable if you (although the latter option may
not help much). Its main weakness is that it depends heavily on knowledge of the first derivatives, and
fails miserably if they are very inaccurate. If first derivatives are a problem, they can be calculated
analytically inside (see elsewhere in this writeup) or if this is not feasible, the user can try to improve
the accuracy of Minuit’s numerical approximation by adjusting values using the and/or

commands (see Floating Point Precision and ).

5.1.2 MINIMIZE

This is equivalent to , except that if fails, it reverts to and then calls
again. This is what the old command used to do, but it was removed from the command
so that users would have a choice, and because it is seldom of any use to call when has
failed (there are of course exceptions).

5.1.3 SCAN

This is not intended to minimize, and just scans the function, one parameter at a time. It does however
retain the best value after each scan, so it does some sort of highly primitive minimization.

5.1.4 SEEK

We have retained this Monte Carlo search mainly for sentimental reasons, even though the limited
experience with it is less than spectacular. The method now incorporates a Metropolis algorithm which
alwaysmoves the search region to be centred at a newminimum, and has probability of moving

26
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the search region to a higher point with function value . This gives it the theoretical ability to jump
through function barriers like a multidimensional quantum mechanical tunneler in search of isolated
minima, but it is widely believed by at least half of the authors of Minuit that this is unlikely to work in
practice (counterexamples are welcome) since it seems to depend critically on choosing the right average
step size for the random jumps, and if you knew that, you wouldn’t need Minuit.

5.1.5 SIMPLEX

This genuine multidimensional minimization routine is usually much slower than , but it does
not use first derivatives, so it should not be so sensitive to the precision of the calculations, and is
even rather robust with respect to gross fluctuations in the function value. However, it gives no reliable
information about parameter errors, no information whatsoever about parameter correlations, and worst
of all cannot be expected to converge accurately to the minimum in a finite time. Its estimate of is
largely fantasy, so it would not even know if it did converge.

5.2 Floating point Precision

Minuit figures out at execution time the precision with which it was compiled, and assumes that
provides about the same precision. That means not just the length of the numbers used and returned by

, but the actual mathematical accuracy of the calculations. The section on Floating point Precision in
Chapter One describes what to do if this is not the case.

5.3 Parameter Limits

Putting limits (absolute bounds) on the allowed values for a given parameter, causes Minuit to make a
non-linear transformation of its own internal parameter values to obtain the (external) parameter values
passed to . To understand the adverse effects of limits, see “The Transformation for Parameters with
Limits” in Chapter 1. Basically, the use of limits should be avoided unless needed to keep the parameter
inside a desired range.
If parameter limits are needed, in spite of the effects described in Chapter One, then the user should be
aware of the following techniques to alleviate problems caused by limits:

5.3.1 Getting the Right Minimum with Limits.

If converges normally to a point where no parameter is near one of its limits, then the existence
of limits has probably not prevented Minuit from finding the right minimum. On the other hand, if one
or more parameters is near its limit at the minimum, this may be because the true minimum is indeed at
a limit, or it may be because the minimizer has become “blocked” at a limit. This may normally happen
only if the parameter is so close to a limit (internal value at an odd multiple of that Minuit prints a
warning to this effect when it prints the parameter values.
The minimizer can become blocked at a limit, because at a limit the derivative seen by the minimizer

is zero no matter what the real derivative is.

For a steppingmethod (like ) this seldom poses any problem, but a method based on derivatives
( ) may become blocked at such a value. If this happens, it may be necessary to move the value
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of the parameter in question a significant distance from the limit (with ) and restart the
minimization, perhaps with that parameter fixed temporarily. We are investigatingways to induceMinuit
to extricate itself from such situations automatically, but it is not so obvious as it seems, and for the
moment must sometimes be done by hand.

5.3.2 Getting the right parameter errors with limits.

In the best case, where the minimum is far from any limits, Minuit will correctly transform the error
matrix, and the parameter errors it reports should be accurate and very close to those you would have
got without limits. In other cases (which should be more common, since otherwise you wouldn’t need
limits), the very meaning of parameter errors becomes problematic. Mathematically, since the limit is
an absolute constraint on the parameter, a parameter at its limit has no error, at least in one direction.
The error matrix, which can assign only symmetric errors, then becomes essentially meaningless. On
the other hand, the analysis is still meaningful, at least in principle, as long as (which
is called internally by ) does not get blocked at a limit. Unfortunately, the user has no control
over this aspect of the calculation, although it is possible to get enough printout from the
command to be able to determine whether the results are reliable or not.

5.4 Fixing and Releasing Parameters

When Minuit needs to be guided to the “right” minimum, often the best way to do this is with the
and commands. That is, suppose you have a problem with ten free parameters, and when you
minimize with respect to all at once, Minuit goes to an unphysical solutioncharacterized by an unphysical
or unwanted value of parameter number four. One way to avoid this is to parameter four at a “good”
value (not necessarily the best, since you presumably don’t know that yet), and minimize with respect to
the others. Then and minimize again. If the problem admits a “good” physical solution, you
will normally find it this way. If it doesn’t work, you may see what is wrong by the following sequence
(where is the expected physical value for parameter four):

where the command gives you a picture of as a function of parameter four alone, the others
being fixed at their current best values. If you suspect the difficulty is due to parameter five, then add the
command

to see a two-dimensional picture.

5.5 Interpretation of Parameter Errors

There are two kinds of problems that can arise: The reliability of Minuit’s error estimates, and their
statistical interpretation, assuming they are accurate.
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5.5.1 Statistical Interpretation.

For discussuion of basic concepts, such as the meaning of the elements of the error matrix, parabolic
versus errors, the appropriate value for (see ), and setting of exact confidence
levels, see (in order of increasing complexity and completeness):

– “Interpretation of the Errors on Parameters”, see Part 3 of this write-up.
– “Determining the Statistical Significance of Experimental Results”[4].
– “StatisticalMethods in Experimental Physics”[5].

5.5.2 The Reliability of Minuit Error Estimates.

Minuit always carries around its own current estimates of the parameter errors, which it will print out on
request, nomatter how accurate they are at any given point in the execution. For example, at initialization,
these estimates are just the starting step sizes as specified by the user. After a or step, the
errors are usually quite accurate, unless there has been a problem. Minuit, when it prints out error values,
also gives some indication of how reliable it thinks they are. For example, those marked

are only working values not to be believed, and means that
they have been calculated but there is reason to believe that they may not be accurate. If no mitigating
adjective is given, then at least Minuit believes the errors are accurate, although there is always a small
chance that Minuit has been fooled. Some visible signs that Minuit may have been fooled are:

– Warning messages produced during the minimization or error analysis.
– Failure to find new minimum.
– Value of too big. For a “normal” minimization, after , the value of is usually more
than three orders of magnitude smaller than (the ), unless a looser tolerance has
been specified.

– Correlation coefficients exactly equal to zero, unless some parameters are known to be uncorrelated
with the others.

– Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally
difficult problem, and one which has been badly parametrized so that individual errors are not very
meaningful because they are so highly correlated.

– Parameter at limit. This condition, signalled by a Minuit warning message, may make both the
function minimum and parameter errors unreliable. See section 5.3.2, Getting the right parameter
errors with limits.

The best way to be absolutely sure of the errors, is to use “independent” calculations and compare them,
or compare the calculated errors with a picture of the function if possible. For example, if there is only
one free parameter, the command allows the user to verify approximately the function curvature.
Similarly, if there are only two free parameters, use . To verify a full error matrix, compare
the results of with those (calculated afterward) by , which uses a different method. And
of course the most reliable and most expensive technique, which must be used if asymmetric errors are
required, is .
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5.6 Convergence in MIGRAD, and Positive-definiteness.

uses its current estimate of the covariance matrix of the function to determine the current search
direction, since this is the optimal strategy for quadratic functions and “physical” functions should be
quadratic in the neighbourhood of the minimum at least. The search directions determined by
are guaranteed to be downhill only if the covariance matrix is positive-definite, so in case this is not
true, it makes a positive-definite approximation by adding an appropriate constant along the diagonal
as determined by the eigenvalues of the matrix. Theoretically, the covariance matrix for a “physical”
function must be positive-definite at the minimum, although it may not be so for all points far away from
the minimum, even for a well-determined physical problem. Therefore, if reports that it has
found a non-positive-definite covariance matrix, this may be a sign of one or more of the following:

– A non-physical region. On its way to the minimum, may have traversed a region which
has unphysical behaviour, which is of course not a serious problem as long as it recovers and leaves
such a region.

– An underdetermined problem. If the matrix is not positive-definite even at the minimum, this
may mean that the solution is not well-defined, for example that there are more unknowns than
there are data points, or that the parametrization of the fit contains a linear dependence. If this is
the case, then Minuit (or any other program) cannot solve your problem uniquely, and the error
matrix will necessarily be largely meaningless, so the user must remove the underdeterminedness
by reformulating the parametrization. Minuit cannot do this itself, but it can provide some hints
(contours, global correlation coefficients, eigenvalues) which can help the clever user to find out
what is wrong.

– Numerical inaccuracies. It is possible that the apparent lack of positive-definiteness is in fact
only due to excessive roundoff errors in numerical calculations, either in or in Minuit. This
is unlikely in general, but becomes more likely if the number of free parameters is very large, or
if the parameters are badly scaled (not all of the same order of magnitude), and correlations are
also large. In any case, whether the non-positive-definiteness is real or only numerical is largely
irrelevant, since in both cases the error matrix will be unreliable and the minimum suspicious.

5.7 Additional Trouble-shooting

When Minuit just doesn’t work, some of the more common causes are:

– Precision mismatch. Make sure your has been compiled with the same precision as the
version of Minuit you are using. When using , it is safest to use the
declaration to make sure that everything is , not just the arguments of
but also the internal variables. Note that depending on the computer system used, floating-point
constants may be passed as single precision in subroutine arguments, even if there is an

statement (which is strictly speaking correct since the statement
refers only to variables, not constants). Therefore, if constants are used as arguments in subroutine
calls, they must be explicitly of the right precision (for example, on Apollo, even 0. is not equal to

).
If the problem is only one of precision, and not of word length mismatch, an appropriate
command may fix it.

– Trivial bugs in . The possibilities for Fortran bugs are numerous. Probably the most common
among physicists inexperienced in Fortran is the confusion between and types,
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which you can sometimes get away with, but not always. [For example, if and are
variables, the Fortran statement is not good programming, but happens to do what the
user probably intended, whereas the statement almost certainly will not do what the
user intended.] Minuit can spot some trivial bugs itself, and issues a warning when it detects an
unusual behaviour. Such a warning should be taken seriously.
Minuit also offers some tools (especially ) which can help the user to find trivial bugs.

– Overwriting in a user routine. Overwriting most often occurs when setting the values of a local
array or an array in , and elements outside the dimensions of the array are addressed. Most
computer systems do not detect this error unless you attempt to write into a protected area of
memory, and of course Minuit is also helpless, especially if Minuit itself is being overwritten. The
symptoms of user overwriting may be almost anything, including unusual behaviour of Minuit
itself. The effects depend critically on where instructions and data are loaded in memory, so
they may change completely if the same program is recompiled with different compiler options or
reloaded in a different sequence, even though the compiler and loader are not at fault.

– Changing the values of input arguments. In subroutine , for example, the arguments
and , as well as the values of the parameters themselves, are only input to and their
values should not be changed inside . Minuit is now protected against this in principle, since
the user only gets a copy of the value, not the actual address of the internal Minuit variable, but
still this is a symptom of misunderstanding by the user.
If you really want to change the number of variable parameters, this must be done with commands
like and , by redefining parameters using command or .
Similarly, if a parameter takes on an unwanted value, it will do no good to change its value inside

: In the best case, Minuit won’t see your improved value, and in the worst case, it will produce
unpredictable results. To set a parameter to a certain value, use the command , and to
keep it within certain bounds, use the command . If the parameter must obey more
complicated constraints, you must find a trick such as adding a penalty value to outside of the
physical region, to force it back to where you want it.

– An ill-posed problem. For questions of parameter dependence, see the discussion above on
postive-definiteness. Other mathematical problems which can arise are: excessive numerical
roundoff—be especially careful of exponential and factorial functions which get big very quickly
and lose accuracy; starting too far from the solution — the function may have unphysical
local minima, especially at infinity in some variables; incorrect normalization— in likelihood
functions, the probability distributions must be normalized or at least have an integral which is
independent of the values of the variable parameters.

– A bug in Minuit. This is extremely unlikely, but it did happen once. If a bug is suspected, and
all other possible causes can be eliminated, please try to save a copy of the input and output files,
listing of , and other information that may be relevant, and send them to
or or .
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We give here one full example of a real fit, performed first in batch data-driven mode, then the same fit
performed by Fortran calls.

6.1 A data-driven fit

The example job given here is set up for batch processing. The statements assign the input and
output files, and are somewhat computer-dependent (those given here are for a Vax). On many systems,
it may be more convenient (or necessary) to perform the file assignments in JCL rather than from the
Fortran, but whatever the user decides, the files must be opened and the unit numbers communicated to
Minuit before the call to .
The same job could be run interactively, in which case the input and output files would be assigned to the
terminal, and the “user’s data” listed below, instead of coming from a file, would be typed in directly to
the terminal.

The User’s main program

The User’s FCN

32
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The user’s data to drive Minuit.
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6.2 The same example in Fortran-callable mode.

The program below takes the place of the data in the above example.

The User’s main program and subroutine
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The FCN is exactly the same in Fortran-callable mode as in data-driven mode.
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It often happens that the solution of a minimization problem usingMinuit is itself straightforward, but the
calculation or interpretation of the resulting parameter uncertainties is considerably more complicated.
The purpose of this chapter is to clarify the most commonly encountered difficulties in parameter error
determination. These difficulties may arise in connection with any fitting program, are discussed here
with Minuit terminology.
The most common causes of misinterpretation may be grouped into three categories:

(1) Proper normalization of the user-supplied chi-square or likelihood function, and appropriate
.

(2) Non-linearities in the problem formulation, leading to different errors being calculated by different
techniques, such as , and .

(3) Multiparameter error definition and interpretation.

All these topics are discussed in some detail in Eadie et al.[5], which may be consulted for further details.

7.1 Function normalization and

In order to provide for full generality in the user-defined function value, the user is allowed to define a
normalization factor known internally as and defined by the Minuit user on an command
card. The default value is one. The Minuit error on a parameter is defined as the change of parameter
which would produce a change of the function value equal to . This is the most general way to define
the error, although in statistics it is more usual to define it in terms of the second derivative of the
function – with respect to the parameter in question. In the simplest linear case (when the function is
exactly parabolic at the minimum), the value corresponds to defining the error as the inverse of
the second derivative at the minimum. The fact that Minuit defines the error in terms of a function change
does not mean that it always calculates such a function change. Indeed it sometimes ( ) calculates
the second derivative matrix and inverts it, assuming a parabolic behaviour. This distinction is discussed
in section 7.2.
The purpose of defining errors by function changes is threefold:

(1) to preserve its meaning in the non-parabolic case (see section 7.2);
(2) to allow generality when the user-defined function is not a chi- square or likelihood, but has some

other origin;
(3) to allow calculation not only of “one-standard deviation” errors, but also two or more standard

deviations, or more general ’confidence regions’, especially in themultiparameter case (see section
7.3).

7.1.1 Chi-square normalization

If the user’s function value is supposed to be a chisquare, it must of course be properly normalized.
That is, the “weights” must in fact correspond to the one-standard-deviation errors on the observations.
The most general expression for the chi-square is of the form (see [5], p.163):

37
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where is the vector of observations, is the vector of fitted values (or theoretical expressions for
them) containing the variable fit parameters , and is the inverse of the error matrix of the observations
, also known as the covariance matrix of the observations.
Fortunately, in most real cases the observations are statistically independent of each other (e.g., the
contents of the bins of a histogram, ormeasurements of points on a trajectory), so thematrix is diagonal
only. The expression for then simplifies to the more familiar form:

where is the inverse of the diagonal element of , the square of the error on the corresponding
observation . In the case where the are integer numbers of events in an unweighted histogram, for
example, the are just equal to the x (or to the y, see [5], pp.170-171).
The minimization of above is sometimes called weighted least squares in which case the inverse
quantities are called the weights. Clearly this is simply a different word for the same thing, but in
practice the use of these words sometimes means that the interpretation of as variances or squared
errors is not straightforward. The word weight often implies that only the relative weights are known
(“point two is twice as important as point one”) in which case there is apparently an unknown overall
normalization factor. Unfortunately the parameter errors coming out of such a fit will be proportional to
this factor, and the user must be aware of this in the formulation of his problem.
The may also be functions of the fit parameters (see [5], pp.170-171). Normally this results in
somewhat slower convergence of the fit since it usually increases the nonlinearity of the fit. (In the
simplest case it turns a linear problem into a non-linear one.) However, the effect on the fitted parameter
values and errors should be small.
If the user’s chi-square function is correctly normalized, he should use (the default value) to get
the usual one standard-deviation errors for the parameters one by one. To get two-standard-dev.eviation
errors, use , etc., since the chisquare dependance on parameters is quadratic. For more
general confidence regions involving more than one parameter, see section 7.2.

7.1.2 Likelihood normalization

If the user function is a negative log-likelihood function, it must again be correctly normalized, but the
reasons and ensuing problems in this case are quite different from the chisquare case. The likelihood
function takes the form (see [5], p. 155):

where each represents in general a vector of observations, the are the free parameters of the fit, and
the function represents the hypothesis to be fitted. This function must be normalized:

that is, the integral of over all observation space must be independent of the fit parameters .
The consequence of not normalizing properly is usually that the fit simply will not converge, some
parameters running away to infinity. Strangely enough, the value of the normalization constant does
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not affect the fitted parameter values or errors, as can be seen by the fact that the logarithm makes a
multiplicative constant into an additive one, which simply shifts the whole log-likelihood curve and
affects its value, but not the fitted parameter values or errors. In fact, the actual value of the likelihood at
the minimum is quite meaningless (unlike the chi-square value) and even depends on the units in which
the observation space is expressed. The meaningful quantity is the difference in log-likelihoodbetween
two points in parameter-space, which is dimensionless.
For likelihood fits, the value corresponds to one-standard-deviation errors. Or, alternatively,
may be defined as , in which case differences in have the same meaning as for
chi-square and is appropriate. The two different ways of introducing the factor of 2 are quite
equivalent in Minuit, and although most people seem to use , it is perhaps more logical to put the
factor 2 directly into .

7.2 Non-linearities: versus versus

In the theory of statistics, one can show that in the asymptotic llmit, any of several methods of determining
parameter errors are equivalent and will give the same result. Let us for the moment call these methods

, , and ( is a special case). It turns out that the conditlons under which
these methods yield exactly the same errors are either of the following:

(1) The model to be fitted ( or ) is exactly a linear function of the fit parameters , or
(2) The amount of observed data is infinite.

It may happen that (1) is satisfied, in whlch case you don’t really need Minuit, a smaller, simpler, and
faster program would do, since a linear problem can be solved directly without iterations (see [5], p.
163-165), for example with CERN library program . Nevertheless, it may be convenient to use
Minuit slnce non-linear terms can then be added later if desired, without major changes to the method.
Condition (2) is of course never satisfied, although in practice it often happens that there is enough data
to make the problem “almost linear”, that is there is so much data that the range of parameters allowed
by the data becomes very small, and any physical function behaves linearly over a small enough region.
The following sections explain the dirrerences between the various parameter errors given by Minuit.

7.2.1 Errors printed by Minuit

The errors printed by Minuit at any given stage represent the best symmetric error estimates available at
that stage, which may not be very good. For example, at the first entry to , the user’s step slzes are
given, and these may bear no resemblance at all to proper parameter errors, although they are supposed to
be order-of-magnltude estimates. After crude minimizers like or , a revised error estimate
may be given, but this too is only meant to be an order-or-magnitude estimate, and must certainly not be
taken seriously as a physical result. Such numbers are mainly for the internal use of Minuit, which must
after all assume a step size for future minimizations and derivative calculations, and uses these “errors”
as a first guess to be modified on the basis of experience.

7.2.2 Errors after (or )

Theminimizing technique currently implemented in is a stable variation (the “switching”method)
of the Davidon-Fletcher-Powell variable-metric algorithm. This algorithm converges to the correct error
matrix as it converges to the function minimum.
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This algorithm requires at each step a “working approximation” of the error matrix, and a rather good
approximation to the gradient vector at the current best point. The starting approximation to the error
matrix may be obtained in different ways, depending on the status of the error matrix before MIGRAD
is called as well as the value of STRATEGY. Usually it is found to be advantageous to evaluate the error
matrix rather carefully at the start point in order to avoid premature convergence, but in principle even the
unit matrix can be used as a starting approximation. Usually the Minuit default is to start by calculating
the full error matrix by calculating all the second derivatives and inverting the matrix. If the user wants
to make sure this is done, he can call HESSE before MIGRAD.
If a unit matrix is taken to start, then the first step will be in a steepest descent direction, which is not
bad, but the estimate of EDM, needed to judge convergence, will be poor. At each successive step,
the information gathered from the change of gradient is used to improve the approximation to the error
matrix, without the need to calculate any second derivatives or invert any matrices. The algorithm used
for this updating is supposed to be the best known, but if there are a lot of highly correlated parameters,
it may take many steps before the off-diagonal elements of the error matrix approach the correct values.
In practice, usually yields good estimates of the error matrix, but it is not absolutely reliable for
two reasons:

(1) Convergence to the minimum may occur “too fast” for to have a good estimate of the error
matrix. In the most flagrant of such cases, realizes this and automatically introduces an
additional call to (described below), informing the user that the covariance matrix is being
recalculated. Since, for variable parameters, there are elements in the error matrix,
the number of calls from must be large compared with in order for the
error matrix calculation to be reliable.

(2) gathers information about the error matrix as it proceeds, based on function values calcu-
lated away from the minimum and assuming that the error matrix is nearly constant as a function of
the parameters, as it would be if the problemwere nearly linear. If the problem is highly non-linear,
the error matrix will depend strongly on the parameters, will converge more slowly, and
the resulting error matrix will at best represent some average over the last part of the trajectory in
parameter-space traversed by .

If errors are wrong because of (1), should be commanded after and will give
the correct errors. If errors are wrong because of (2), will help, but only in an academic
sense, since in this case the error matrix is not the whole story and for proper error calculation
must be used.
As a general rule, anyone seriously interested in the parameter errors should always put at least a
command after each (or ) command.

7.2.3 Errors after

simply calculates the full second-derivative matrix by finite differences and inverts it. It therefore
calculates the error matrix at the point where it happens to be when it is called. If the error matrix is not
positive-definite, diagnostics are printed, and an attempt ismade to forma positive-definite approximation.
The error matrix must be positive-definite at the solution (minimum) for any real physical problem. It
may well not be positive away from the minimum, but most algorithms including the algorithm
require a positive-definite “working matrix”.
The error matrix produced by is used to calculate whatMinuit prints as the parameter errors, which
therefore contain the effects due to parameter correlations. The extent of the two-by-two correlations can
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be seen from the correlation coefficients printed by Minuit, and the global correlations (see [5], p. 23)
are also printed. All of these correlation coefficients must be less than one in absolute value. If any of
them are very close to one or minus one, this indicates an illposed problem with more free parameters
than can be determined by the model and the data.

7.2.4 Errors by

is designed to calculate the correct errors in all cases, especially when there are non-linearities as
described above. The theory behind the method is described in [5], pp. 204-205 (where “non-parabolic
likelihood” should of course read “non-parabolic log-likelihood”, which is equivalent to “nonparabolic
chi-square”).

actually follows the function out from the minimum to find where it crosses the function value
(minimum + ), instead of using the curvature at the minimum and assuming a parabolic shape. This
method not only yields errors which may be different from those of , but in general also different
positive and negative errors (asymmetric error interval). Indeed the most frequent result for most physical
problems is that the (symmetric) error lies between the positive and negative errors of . The
difference between these three numbers is one measure of the non-linearity of the problem (or rather of
its formulation).
In practice, errors usually turn out to be close to, or somewhat larger than errors derived from the
error matrix, although in cases of very bad behaviour (very little data or ill-posed model) anything can
happen. In particular, it is often not true in that two-standard-deviation errors ( ) and three-
standard-deviation errors ( ) are respectively two and three times as big as one-standard-deviation
errors, as is true by definition for errors derived from the error matrix ( or ).

7.3 Multiparameter errors

In addition to the difficulties described above, a special class of problems arise in interpreting errors when
there is more than one free parameter. These problems are quite separate from those described above and
are really much simpler in principle, although in practice confusion often arises.

7.3.1 The Error Matrix

The error matrix, also called the covariance matrix, is the inverse of the second derivative matrix of
the (log-likelihood or chisquare) function with respect to its free parameters, usually assumed to be
evaluated at the best parameter values (the functionminimum). The diagonal elements of the error matrix
are the squares of the individual parameter errors, including the effects of correlations with the other
parameters.
The inverse of the error matrix, the second derivative matrix, has as diagonal elements the second partial
derivatives with respect to one parameter at a time. These diagonal elements are not therefore coupled
to any other parameters, but when the matrix is inverted, the diagonal elements of the inverse contain
contributions from all the elements of the second derivative matrix, which is “where the correlations
come from”.
Although a parameter may be either positively or negatively correlated with another, the effect of
correlations is always to increase the errors on the other parameters in the sense that if a given free
parameter suddenly became exactly known (fixed), that would always decrease (or at least not change)
the errors on the other parameters. In order to see this effect quantitatively, the following procedure can
be used to “delete” one parameter from the error matrix, including its effects on the other parameters:
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(1) Invert the error matrix, to yield the second-derivative matrix.
(2) Remove the row and column of the inverse corresponding to the given parameter.
(3) Re-invert the resulting (smaller) matrix.

This reduced error matrix will have its diagonal elements smaller or equal to the corresponding elements
in the original error matrix, the difference representing the effect of knowing or not knowing the true
value of the parameter that was removed at step two. This procedure is exactly that performed by Minuit
when a command is executed. Note that it is not reversible, since information has been lost in the
deletion. TheMinuit commands and therefore cause the error matrix to be considered
lost and it must be recalculated entirely.

7.3.2 with several free Parameters

The algorithm is described in somedetail in part 1 of thismanual. Herewe add some supplementary
“geometrical interpretation” for the multidimensional case.
Let us consider that there are just two free parameters, and draw the contour line connecting all points
where the function takes on the value . (The command will do this for you from
Minuit). For a linear problem, this contour line would be an exact ellipse, the shape and orientation of
which are described in [5], p.196 (fig. 9.4). For our problem let the contour be as in figure 7.1. If
is requested to find the errors in parameter one (the x-axis), it will find the extreme contour points A and
B, whose x-coordinates, relative to the x-coordinate at the minimum (X), will be respectively the negative
and positive errors of parameter one.

Parameter 1

B

A
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Figure 7.1: errors for parameter 1

7.3.3 Probability content of confidence regions

For an -parameter problem performs minimizations in dimensions in order to find the
extreme points of the hypercontour of which a two-dimensional example is given in figure 7.1, and in
this way takes account of all the correlations with the other parameters. However, the errors which
it calculates are still only single-parameter errors, in the sense that each parameter error is a statement
only about the value of that parameter. This is represented geometrically by saying that the confidence
region expressed by the error in parameter one is the grey area of figure 7.2, extending to infinity
at both the top and bottom of the figure.

Parameter 1

B

A

Figure 7.2: error confidence region for parameter 1

If is set to the appropriate one-standard-deviation value, then the precise meaning of the confidence
region of figure 7.2 is: “The probability that the true value of parameter one lies between A and B is
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68.3%” (the probability of a normally-distributed parameter lying within one std.-dev. of its mean).
That is, the probability content of the grey area in figure 7.2 is 68.3%. No statement is made about
the simultaneous values of the other parameter(s), since the grey area covers all values of the other
parameter(s).
If it is desired to make simultaneously statements about the values of two or more parameters, the
situation becomes considerably more complicated and the probabilities get much smaller. The first
problem is that of choosing the shape of the confidence region, since it is no longer simply an interval on
an axis, but a hypervolume. The easiest shape to express is the hyperrectangle given by:

etc.

Parameter 1

B

A

C

Parameter 2 
D

Figure 7.3: Rectangular confidence region for parameters 1 and 2

This confidence region for our two-parameter example is the grey area in figure 7.3. However, there are
two good reasons not to use such a shape:

(1) Some regions inside the hyperrectangle (namely the corners) have low likelihoods, lower than some
regions just outside the rectangle, so the hyperrectangle is not the optimal shape (does not contain
the most likely points).
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(2) One does not know an easy way to calculate the probability content of these hyperrectangles
(see [5], p.196-197, especially fig. 9.5a).

For these reasons one usually chooses regions delimited by contours of equal likelihood (hyperellipsoids
in the linear case). For our two-parameter example, such a confidence region would be the grey region
in figure 7.4, and the corresponding probability statement is: “The probability that parameter one and
parameter two simultaneously take on values within the one-standard-deviation likelihood contour is
39.3%”.
The probability content of confidence regions like those shaded in figure 7.4 becomes very small as the
number of parameters increases, for a given value of . Such probability contents are in fact the
probabilities of exceeding the value for a chisquare function of degrees of freedom, and can
therefore be read off from tables of chisquare. Table 7.1 gives the values of which yield hypercontours
enclosing given probability contents for given number of parameters.
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Parameter 1

B

A

Parameter 2 

Figure 7.4: Optimal confidence region for parameters 1 and 2

Confidence level (probability contents desired inside
Number of hypercontour of )
Parameters 50% 70% 90% 95% 99%

1 0.46 1.07 2.70 3.84 6.63
2 1.39 2.41 4.61 5.99 9.21
3 2.37 3.67 6.25 7.82 11.36
4 3.36 4.88 7.78 9.49 13.28
5 4.35 6.06 9.24 11.07 15.09
6 5.35 7.23 10.65 12.59 16.81
7 6.35 8.38 12.02 14.07 18.49
8 7.34 9.52 13.36 15.51 20.09
9 8.34 10.66 14.68 16.92 21.67
10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 24.71

If is instead of , all values of
should be divided by 2.

Table 7.1: Table of for multi-parameter confidence regions
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