

Corso di studi: Fisica (Laurea magistrale)

Denominazione: Fisica **Dipartimento:** FISICA

Classe di appartenenza: LM-17 FISICA

Interateneo: No

Interdipartimentale: No

Obiettivi formativi: Gli obiettivi formativi del corso di Laurea Magistrale in Fisica, comprendono: - una solida e approfondita preparazione culturale nei diversi campi della Fisica; - un'approfondita conoscenza delle moderne strumentazioni di misura e delle tecniche di analisi dei dati; - un'approfondita conoscenza di strumenti matematici ed informatici di supporto; - una rigorosa padronanza del metodo scientifico di indagine; - una elevata preparazione scientifica e operativa in almeno una delle discipline che caratterizzano la classe: Astrofisica, Biofisica, Elettronica, Fisica Applicata, Fisica Medica, Fisica della Materia, Fisica dello Spazio, Fisica Nucleare, Fisica Subnucleare e Astroparticellare, Fisica Teorica, e Geofisica. - attitudine ad inserirsi nel mondo della ricerca scientifica o in realtà lavorative che necessitino di elevate conoscenze scientifiche e tecnologiche. Per questo scopo, il corso di Laurea Magistrale e' articolato in piani di studio che rispondono a specifiche esigenze formative, e che corrispondono a linee di ricerca attive presso il Dipartimento di Fisica o presso Istituzioni ad esso collegate. La preparazione raggiunta nella Laurea Magistrale, si qualifica per mezzo di conoscenze specifiche che, a seconda del piano di studi scelto, assumono la forma di: - una conoscenza approfondita degli aspetti fondamentali della fisica teorica e una conoscenza operativa dei metodi matematici e di calcolo numerico e simbolico. In particolare, lo studente apprenderà la teoria dei campi classici e quantizzati e la meccanica statistica, e le loro applicazioni alle interazioni fondamentali e alla fisica dello stato condensato; - un'approfondita comprensione e capacità operativa per un'attività di ricerca in una larga varietà di problematiche della Fisica della Materia, come fisica atomica e molecolare, fisica dei plasmi, elettronica quantistica, biofisica, fisica dello stato solido, fisica dei liquidi e sistemi disordinati, fisica delle superfici e delle interfacce, fisica computazionale. Ciascuna di queste aree di ricerca coinvolge preparazione sia teorica sia sperimentale; - conoscenze teoriche e fenomenologiche insieme con capacità operative per un'attività di ricerca nel campo della Fisica delle particelle nucleari e subnucleari, della fisica delle onde gravitazionali e di quella delle particelle d'origine cosmica. - una conoscenza approfondita degli aspetti fondamentali dell'astrofisica e della fisica dello spazio, con i legami che intercorrono tra le evidenze astrofisiche e la fisica di base. Saranno sviluppati gli aspetti teorici e sperimentali della disciplina; - un'approfondita comprensione e capacità operativa per un'attività di ricerca e di inserimento in differenti settori di lavoro, nel campo della Fisica Medica, con particolare attenzione allo sviluppo di dispositivi fisici per diagnostica biomedica.

Numero stimato immatricolati: 130

Requisiti di ammissione e modalità di verifica: Il requisiti curriculari per l'ammissione al corso di Laurea Magistrale sono 90 CFU maturati nei SSD di Fisica (SSD FIS/01-08). Sono ammessi inoltre gli studenti dell'Ecole Polytechnique e di Sorbonne University (Francia) su selezione degli enti stranieri e successivamente previo esame di ammissione da parte del Dipartimento di Fisica di Pisa, come regolato da specifiche convenzioni e "learning agreement" fra gli enti stranieri e Universita' di Pisa. Il livello richiesto di conoscenza della lingua inglese è il B2. L'adeguatezza della preparazione personale e della conoscenza della lingua viene verificata tramite l'esame del curriculum dello studente ed un eventuale colloquio a cura del Presidente del CdS o di un suo delegato.

Specifica CFU: Per i corsi cattedratici e di laboratorio la corrispondenza tra crediti e ore di didattica frontale viene stabilita al momento della Programmazione Didattica nel rispetto del vigente Regolamento Didattico di Ateneo.

Modalità determinazione voto di Laurea: La Commissione dell'esame di Laurea formula il proprio giudizio considerando la carriera complessiva del candidato ed in particolare:

- l'intero percorso formativo del candidato analizzando:
- a) i voti degli esami da lui sostenuti nel corso di laurea magistrale;
- b) la consistenza scientifica e la coerenza del suo piano di studi.
- il valore scientifico del lavoro svolto nella Tesi di Laurea, tenendo conto in particolare
- a) dell'autonomia dimostrata dal candidato nello svolgimento del lavoro di tesi;
- b) della qualita' dell'elaborato scritto e dell'esposizione orale;
- c) dell'originalita' dimostrata dal candidato;
- d) del contributo personale del candidato ai risultati ottenuti.
- Il voto di Laurea e' espresso in centodecimi. La Commissione giudicatrice su proposta del Presidente, può attribuire la lode con parere unanime.

Attività di ricerca rilevante: Attivita` di ricerca rilevante

Il Dipartimento di Fisica di Pisa ha una importante e riconosciuta tradizione di ricerca in ambito internazionale. Le attuali linee di ricerca possono essere brevemente riassunte come segue: Fisica teorica: Interazioni fondamentali; Teoria quantistica dei campi; Fisica statistica; Fenomeni critici; Fisica dello stato condensato; Sistemi a molto corpi quantistici; Sistemi disordinati; Fisica Nucleare; Fisica dello stato solido. Fisica della materia: NanoLab; Fenomeni non lineari, raffreddamento laser, onde di materia, quantum simulations; Metrologia e Spettroscopia ad alta risoluzione; Spettroscopia con sorgenti coerenti e simulazione numerica per lo studio di polimeri e glassformers; Fisica in campi laser intensi e ultrabrevi; Cristalli Liquidi; Comportamento non lineare e stocastico di sistemi fisici; Ablazione Laser; Fenomeni collettivi nei plasmi; Spettroscopia lineare e non lineare nel regime di moto lento; Proprieta' elettroniche, ottiche e di trasporto di nanostrutture di semiconduttori; Fisica dei polimeri, liquidi super raffreddati e vetri, Comportamento dielettrico e proprietà di trasporto di sistemi macromolecolari; Dinamica elettrone fonone ed effetto Jahn-Teller; Dinamica non lineare nei plasmi; Spettroscopia a radiofrequenza ed elettronica quantistica; Nuovi materiali per applicazioni laser. Astronomia e astrofisica: Cosmologia/struttura ed evoluzione galattica; Astrofisica delle alte energie/Fisica astroparticellare; Mezzo interstellare; Sistema solare/Pianeti extrasolari; Plasma/MHD/Fluidi; Astrofisica stellare. Fisica applicata: Ricerca e sviluppo in adroterapia. Sviluppi e applicazioni dei fotomoltiplicatori al silicio alla tomografia ad emissione di positroni. Diagnosi coadiuvata dal Computer Applicazioni delle sorgenti Thomson di raggi X. Immagini a contrasto di fase. Nuove tecniche di indagine micro TC a raggi X. Sviluppi per Imaging funzionale e relativa strumentazione. Sviluppi per risonanza magnetica standard e con campi ultra elevati. Research and Development in Hadrontherapy. Developments and applications of Silicon Photomultiplier to Positron Emission Tomography. Computer Aided Detection. Applications on X-ray Thomson sources. X-ray Phase contrast imaging. New techniques in X-ray micro CT. Development for Functional Imaging and Related Instrumentation. Developments for standard and ultra-high-field Magnetic Resonance Imaging. Fisica delle interazioni fondamentali: Studio delle caratteristiche delle interazioni delle particelle elementari, quark e leptoni, mediante esperimenti agli acceleratori e con i raggi cosmici.. Studio delle onde gravitazionali e delle loro sorgenti. Ricerca di nuova fisica. Gli esperimenti sono effettuati presso grandi centri di ricerca internazionali (CERN, Fermilab, PSI, KEK, Gran Sasso, SLAC, Osservatorio EGO) in collaborazione con la Sezione di Pisa dell'Istituto Nazionale di Fisica Nucleare. Gli esperimenti attivi includono: AMS02; ATLAS; BABAR; BELLE2; CMS; CTA; DARKSIDE; G-2; G-GRANSASSO-RD; GGG; GLAST/FERMI; IXPE; LHCB; LSPE; MAGIA-ADV; MAGIC; MEG; MU2E; NA62; TOTEM; VIRGO

Rapporto con il mondo del lavoro: I risultati delle indagini svolta da AlmaLaurea e consorzi simili mostrano per i laureati in Fisica pre e post riforma una situazione occupazionale positiva, con evidenze che contraddicono luoghi comuni molto diffusi

circa la mancanza di lavoro per chi intraprende questo tipo di studi. I laureati in Fisica hanno il più alto tasso di occupazione in assoluto (sia dopo uno che dopo cinque anni), anche rispetto alle lauree del gruppo Scientifico, oltre il 90%. Il problema in Italia, dunque, non sembra essere tanto l'ingresso dei laureati nel mondo del lavoro quanto piuttosto il loro numero ridotto. Per questo, e lo si va dicendo da tempo e da più parti autorevoli, le iscrizioni a Fisica sono da incentivare. Le prospettive professionali dei laureati in fisica, la cui preparazione e' ampiamente riconosciuta ed apprezzata anche a livello internazionale, sono segnalate attualmente nell'industria (ad es. settori elettronico, informatico e biomedico), nelle aree in cui e' richiesta la capacita' di costruire modelli di realtà complesse (ad es. banche, imprese finanziarie, società di consulenza) nel mondo della ricerca scientifica (enti di ricerca, imprese, università) e nella scuola. La laurea in Fisica è necessaria per l'iscrizione alla Scuola di Specializzazione in Fisica Medica, che apre al mondo del lavoro del Fisico nel Sistema Sanitario Nazionale.

Informazioni aggiuntive: La struttura della Laurea Magistrale prevede specifici percorsi formativi attraverso l'attivazione di piani di studio correlati alle attivita' di ricerca svolte nel Dipartimento di Fisica e nelle realta' scientifiche e culturali presenti nel territorio, quali la Scuola Normale Superiore, la Scuola S. Anna, il CNR, l'INFN, l'ARPAT. Per questo il Corso di Studi prevede di arricchire l'offerta formativa anche con il contributo di docenti esterni appartenenti a queste istituzioni. Studenti che intendano seguire orientamenti non esplicitamente previsti sono invitati a presentare i loro piani di studio correlati eventualmente con una sommaria indicazione delle ragioni delle loro scelte; tali piani saranno esaminati dalla Commissione Didattica Paritetica ed approvati, su conforme parere della Commissione, dal Consiglio dei Corsi di Studio delle Classi di Fisica. DECRETO RETTORALE DEL 04/08/2009 N. 11038

Curricula definiti nel CDS Fisica Regolamento Fisica INTERAZIONI FONDAMENTALI

FISICA TEORICA

FISICA DELLA MATERIA

FISICA MEDICA

ASTRONOMIA E ASTROFISICA

GENERALE

Gruppi per attività a scelta nel CDS Fisica Regolamento Fisica

Gruppo GR. fis 01 pds libero (9 CFU)

Descrizione: Tutti gli insegnamenti FIS 01 che sono obbligatori in qualche piano di studi

Tipologia: Caratterizzanti Ambito: Sperimentale applicativo

Gruppo GR. fis 02 pds libero (18 CFU)

Descrizione: Tutti gli insegnamenti FIS 02 che sono obbligatori in qualche piano di studi

Tipologia : Caratterizzanti Ambito: Teorico e dei fondamenti della fisica

Gruppo GR. fis 03 e 04 pds libero (9 CFU)

Descrizione: Tutti gli insegnamenti FIS 03/04 che sono obbligatori in qualche piano di studi

Tipologia : Caratterizzanti Ambito: Microfisico e della struttura della materia

Gruppo GR. fis 05 pds libero (9 CFU)

Descrizione: Tutti gli insegnamenti FIS 05 che sono obbligatori in qualche piano di studi

Tipologia: Caratterizzanti Ambito: Astrofisico, geofisico e spaziale

Gruppo GR FIS: affini e integrative (18 CFU)

Descrizione: corsi "FIS" attività: affini e integrative

Tipologia: Affini o integrative

Gruppo Teorico: laboratori (9 CFU)

Descrizione: Corsi FIS01

Tipologia: Caratterizzanti Ambito: Sperimentale applicativo

Gruppo IF: Gruppo 2 (6 CFU)

Descrizione: Corsi caratterizzanti FIS05

Tipologia : Caratterizzanti **Ambito**: Astrofisico, geofisico e spaziale

Gruppo GR9 (9 CFU)

Descrizione: GRUPPO A SCELTA

Gruppo Astro: microfisico (9 CFU)

Descrizione: corsi FIS03/04 completamento obbligo

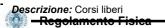
Tipologia : Caratterizzanti Ambito: Microfisico e della struttura della materia

Gruppo Medica: teorica (9 CFU)

Descrizione: Corso caratterizzante per il curriculum di Fisica Medica **Tipologia:** Caratterizzanti **Ambito**: Teorico e dei fondamenti della fisica

Gruppo Teorico: astrofisica (6 CFU)

Descrizione: Corso caratterizzante - Fisica Teorica


Tipologia : Caratterizzanti Ambito: Astrofisico, geofisico e spaziale

Gruppo struttura: a scelta (9 CFU)

Descrizione: Corso consigliato per il curriculum di Fisica della Materia

Tipologia: Affini o integrative

Gruppo Liberi 12 CFU (12 CFU)

Gruppo Medica: microfisico (6 CFU)

Descrizione: Corsi FIS03/04

Tipologia : Caratterizzanti Ambito: Microfisico e della struttura della materia

Gruppo Liberi 15 CFU (15 CFU)

Descrizione: Corsi liberi

Gruppo Medica: astro (6 CFU)

Descrizione: Corso caratterizzante del curriculum

Tipologia: Caratterizzanti Ambito: Astrofisico, geofisico e spaziale

Gruppo Struttura: microfisico 1 (9 CFU)

Descrizione: Corso caratterizzante per il curriculum di Fisica della Materia Plasmi, Stato solido

Tipologia: Affini o integrative

Gruppo Struttura: astrofisico (antonella non usare) (6 CFU)

Descrizione: caratterizzanti FIS05 (manca plasmi!)

Tipologia: Affini o integrative

Gruppo Teorico: affini e integrativi (18 CFU)

Descrizione: Altri corsi DI NECESSARIA ATTIVAZIONE per il curriculum di Fisica teorica

Tipologia: Affini o integrative

Gruppo Teorico: microfisica (9 CFU)

Descrizione: Corso caratterizzante - Fisica Teorica

Tipologia : Caratterizzanti Ambito: Microfisico e della struttura della materia

Gruppo Astro: gruppo ASTR (9 CFU)

Descrizione: corsi gruppo ASTR (almeno 6 CFU)

Tipologia: Affini o integrative

Gruppo IF: Gruppo 1 (9 CFU)

Descrizione: IF: Corsi FIS02

Tipologia : Caratterizzanti Ambito: Teorico e dei fondamenti della fisica

Gruppo Medica: gruppo FMED 18 (18 CFU)

Descrizione: Corsi consigliati per il curriculum di Fisica Medica

Tipologia: Affini o integrative

Note:

Almeno 18 CFU da questi corsi

Gruppo Struttura: teorico (9 CFU)

Descrizione: Corso caratterizzante per il curriculum di Fisica della Materia **Tipologia:** Caratterizzanti **Ambito:** Teorico e dei fondamenti della fisica

Gruppo Struttura: microfisico 2 (9 CFU)

Descrizione: Corsi caratterizzanti curriculum struttura: sistemi complessi, sistemi disordinati

Tipologia : Caratterizzanti Ambito: Microfisico e della struttura della materia

Gruppesalamantasisissica (6 CFU)

Descrizione: Struttura: FIS05 **Tipologia :** Caratterizzanti Ambito: Astrofisico, geofisico e spaziale

Gruppo IF: gruppo IF (9 CFU)

Descrizione: Libera scelta di contenuto IF

Tipologia: Affini o integrative

Gruppo Astro: teorico (9 CFU)

Descrizione: corsi FIS02 completamento obbligo

Tipologia: Caratterizzanti Ambito: Teorico e dei fondamenti della fisica

Gruppo IF. Gruppo 3 (6 CFU)

Descrizione: corsi a scelta fra le attività affini e integrative

Tipologia: Affini o integrative

Gruppo IF: Gruppo 4 (9 CFU)

Descrizione: gruppo per attività a scelta

Tipologia: Affini o integrative

Gruppo IF: liberi (9 CFU)

Descrizione: Attenzione rimpiazzato da IF: gruppo IF

Gruppo Liberi 9 CFU (9 CFU)

Descrizione: Tutti gli insegnamenti del corso di laurea fino a 9 CFU

Gruppo Medica: gruppo FMED 18CFU (18 CFU)

Descrizione: Corsi consigliati per il curriculum di Fisica Medica

Tipologia: Affini o integrative

Attività formative definite nel CDS Fisica Regolamento Fisica

Modello Standard (9 CFU)

Denominazione in Inglese: Standard Model

Obiettivi formativi: Il corso intende approfondire il Modello Standard delle interazioni

fondamentali, in particolare il settore elettrodebole, basato su una teoria di gauge nonabeliana e il meccanismo di Higgs. Vengono trattati vari aspetti della teoria, con una particolare attenzione alla rilevanza fenomenologica. Vengono discussi criticamente la validita' della teoria, in quanto teoria effettiva valida sino ad una certa scala di energia, i possibili segnali di nuova fisica che potrebbero emergere dalle analisi sperimentali future, ed i possibili sviluppi teorici futuri.

//

This course focuses on the Standard Model of the fundamental interactions, in particular the electroweak sector, that is a quantum field theory based on a nonabelian gauge invariance and the Higgs mechanism. Various aspects of the theory are discussed, with a particular attention to their phenomenological relevance. The course also addresses the validity and predictivity of the Standard Model, considering it as an effective theory holding up to a large energy

CFU: 9

Reteirabilità: 1

Propedeuticità: Propedeuticita' Fisica Teorica 1, e si raccomanda di seguire Standard Model in parallelo con il corso di Fisica Teorica 2.

Modalità di verifica finale: Prova Orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Standard Model	9	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	Teorico e dei fondamenti della Fisica

Acceleratori Laser-Plasma (6 CFU)

Denominazione in Inglese: Laser-plasma accelerators

Obiettivi formativi: Il corso intende fornire allo studente competenze (sia a livello di fisica che di trattazione analitico/numerica)

riguardanti gli acceleratori di particelle compatti da interazione laser-plasma. Tali acceleratori sfruttano il campo elettrico di onde longitudinali nei plasmi

eccitate da impulsi laser ultra-intensi e permettono la realizzazione di campi elettrici acceleranti dell'ordine di decine di GV/m, quindi circa tre ordini di grandezza

piu' elevati rispetto a quelli ottenibili con agli acceleratori convenzionali.

Tali competenze saranno sviluppate dapprima mediante lo studio dell'eccitazione e propagazione di onde nei plasmi sottocritici e, successivamente,

con l'approfondimento delle problematiche fisiche che sottendono la generazione degli impulsi laser ultraintensi.

Lo studio dell'evoluzione (anche in regime fortemente nonlineare) di tali onde di plasma e dell'impulso laser che le eccita, verra' successivamente

affrontato sia con tecniche analitiche che numeriche.

Verranno, inoltre, discussi i principi fisici e le tecniche principali per iniettare i bunches di elettroni nell'onda di plasma, con enfasi

sugli schemi di iniezione che consentono la generazione di bunches ad elevata qualita' (brillanza), qundi di potenziale utilizzo

in acceleratori "in cascata" o in sorgenti di radiazione X coerente (Free Electron Laser).

Learning outcomes

The course aims at developing (physical and analytical/numerical) skills on compact laser-plasma accelerators employing ultra-intense laser pulses that excite longitudinal plasma waves in under-critical plasmas.

Laser-plasma accelerators are nowdays able to generate accelerating gradients of tens of GV/m, i.e. about three orders of magnitude higher than those obtainable in standard accelerators.

During the course, the physics of ultraintense laser pulse generation will be introduced. Next, a linear and a fully nonlinear treatment of the plasma waves and of the laser pulse (coupled) evolution will be given.

Finally, we will explore bunch-injection techniques (trapping of the electrons in the plasma wave), with enphasis on those schemes

aiming at generating high-quality bunches, i.e. bunches having enough quality to be employed in a multi-stage accelerator scheme or to trigger

an high-brilliance coherent X-ray source (Free Electron Laser).

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: esame orale

Lingua ufficiale: Italiano

Denominazione CFU SSD Tipologia Caratteristica Ambito

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Acceleratori Laser-Plasma	6	FIS/03 FISICA DELLA MATERIA	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Algoritmi di spettroscopia (3 CFU)

Denominazione in Inglese: Spectroscopy algorithms

Obiettivi formativi: Algoritmi numerici per la spettroscopia e per la fisica. Sviluppo di algoritmi grafici di interesse fisico in ambiente tipo Unix sotto il sistema X-Window.

CFU: 3 Reteirabilità: 1

Modalità di verifica finale: orale Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Algoritmi di spettroscopia	3	FIS/03 FISICA DELLA MATERIA		lezioni frontali+laboratorio	A scelta dello studente

Analisi statistica dei dati (9 CFU)

Denominazione in Inglese: Statistical Data Analysis

Obiettivi formativi: Teoria dei test statistici (sia di significato (Fisher) che di decisione (Neyman-Pearson)); teoria degli stimatori (consistenza, distorsione, sufficienza, efficenza...); studio dettagliato dei metodi di Massimo di verosimiglianza e Minimo dei quadrati. Intervalli di Confidenza.

Obiettivi formativi in Inglese: Theory of statistical tests (Significance(Fisher) and Decision making(Neyman-Pearson)); Theory of estimators (consistency, bias, sufficiency efficiency...); Estimation methods: Max Likelihood and Least Square. Confidence Intervals.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Analisi statistica dei dati	9	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	lezioni frontali + esercitazioni	Sperimentale applicativo

Aspetti non perturbativi delle teorie di campo quantistiche (9 CFU)

Denominazione in Inglese: Non perturbative approaches to quantum field theories

Obiettivi formativi: Vengono presentati alcuni approcci non perturbativi allo studio delle teorie di campo quantistiche nel contesto delle interazioni fondamentali, della fisica statistica e della materia condensata.

Il corso e` diviso in tre parti, fra di loro interconnesse per vari aspetti ma ciascuna di per se autoconsistente e corrispondente ad un carico didattico di circa 3 CFU. Nella prima parte viene trattata la teoria del gruppo di rinormalizzazione e le tecniche di sviluppo di grande N; la seconda parte e` dedicata alla formulazione e allo studio delle teorie di campo su reticolo; la terza parte e` dedicata alle anomalie nelle teorie quantistiche di campo e allo studio delle teorie di campo conformi.

The course presents non perturbative approaches to the study of quantum field theories (QFT) in the context of fundamental interactions, statistical physics and condensed matter theory.

The course is divided in three parts, each of them corresponding to 3 CFU, which are related to each other by various common aspects, but are anyway self-consistent by themselves. The first part is dedicated to Renormalization Group Theory and the Large N Expansion; the second part deals with the Lattice formulation of Quantum Field Theories; the third part focusses on anomalies in QFT and Conformal Field Theories.

CFU: 9

Reteirabilità: 1

Propedeuticità: Fisica teorica 1 **Modalità di verifica finale:** esame orale

Lingua ufficiale: Italiano

	Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito	
--	---------------	-----	-----	-----------	----------------	--------	--

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Aspetti non perturbativi delle teorie di campo quantistiche	9	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Aspetti non perturbativi delle teorie di campo quantistiche S (6 CFU)

Denominazione in Inglese: Non perturbative approaches to quantum field theories

Obiettivi formativi: Vengono presentati alcuni approcci non perturbativi allo studio delle teorie di campo quantistiche nel contesto delle interazioni fondamentali, della fisica statistica e della materia condensata.

Il corso e` diviso in tre parti, fra di loro interconnesse per vari aspetti ma ciascuna di per se autoconsistente e corrispondente ad un carico didattico di circa 3 CFU. Nella prima parte viene trattata la teoria del gruppo di rinormalizzazione e le tecniche di sviluppo di grande N; la seconda parte e` dedicata alla formulazione e allo studio delle teorie di campo su reticolo; la terza parte e` dedicata alle anomalie nelle teorie quantistiche di campo e allo studio delle teorie di campo conformi.

Il corso sara` basato su due di queste parti, a scelta dello studente.

The course presents non perturbative approaches to the study of quantum field theories (QFT) in the context of fundamental interactions, statistical physics and condensed matter theory.

The course is divided in three parts, each of them corresponding to 3 CFU, which are related to each other by various common aspects, but are anyway self-consistent by themselves. The first part is dedicated to Renormalization Group Theory and the Large N Expansion; the second part deals with the Lattice formulation of Quantum Field Theories; the third part focusses on anomalies in QFT and Conformal Field Theories.

The student will choose two out of these three parts.

CFU: 6 Reteirabilità: 1

Propedeuticità: propedeuticità fisica teorica 1 **Modalità di verifica finale:** prova orale

Lingua ufficiale: Italiano

Modul

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Aspetti non perturbativi delle teorie di campo quantistiche S	6	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative	learning	Attività formative affini o integrative

Astrofisica extragalattica e cosmologia (9 CFU)

Denominazione in Inglese: Extragalactic Astrophysics and Cosmology

Obiettivi formativi: Obiettivi formativi: Cosmologia osservativa; formazione delle strutture dal fondo cosmico a microonde alle galassie odierne; evoluzione dinamica e chimica delle galassie e delle loro componenti (stelle, mezzo interstellare, materia oscura) Obiettivo: Fornire un background di astrofisica extragalattica e cosmologia moderna.

Observational cosmology; formation of structures from the CMB to the present galaxies; dynamical and chemical evolution of galaxies and their components (stars, interstellar medium, dark matter) Objective: Provide a background of extragalactic astrophysics and modern cosmology

Obiettivi formativi in Inglese: The basis of the cosmic distance scale, galactic population and chemical evolution and origin of the elements after the Big Bang, galactic structure and stellar dynamics and interactions, galaxy clusters, Hubble law for cosmic expansion.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Astrofisica extragalattica e cosmologia	9	FIS/05 ASTRONOMIA E ASTROFISICA	Caratterizzanti		Astrofisico, geofisico e spaziale

Astrofisica Generale (6 CFU)

Denominazione in Inglese: Astrophysics

Obiettivi formativi: Il corso intende trattare alcuni dei principali problemi dell'astrofisica moderna, illustrando in modo interdisciplinare le differenti tecniche necessarie per affrontare i problemi cosmici.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Astrofisica Generale	_	FIS/05 ASTRONOMIA E ASTROFISICA	Caratterizzanti		Astrofisico, geofisico e spaziale

Astrofisica Osservativa (9 CFU)

Denominazione in Inglese: Astrophysics Observation

Obiettivi formativi: Insegnamento delle tecniche osservative e di analisi dati dell'astrofisica ottica, IR, UV. Obiettivi formativi in Inglese: Teaching of observing and data analysis techniques of optical, IR, UV astronomy.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Astrofisica osservativa	9	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo

Astroparticelle (9 CFU)

Denominazione in Inglese: Astroparticle Physics

Obiettivi formativi: Il modello cosmologico standard. Evoluzione dell'universo dal punto di vista della fisica delle particelle elementari (FPE). Residui cosmologici. Obiettivo: le possibili soluzioni in FPE al problema della massa oscura ed i relativi test sperimentali.

Objectivi formativi in Inglese: The standard cosmological model. Evolution of the universe from the perspective of elementary particle physics. Cosmological residues. Objective: Possible solutions to the elementary particle physics problem of dark matter and its experimental test.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Astroparticelle	9	FIS/05 ASTRONOMIA E ASTROFISICA	Caratterizzanti	+	Astrofisico, geofisico e spaziale

Astroparticelle A (6 CFU)

Denominazione in Inglese: Astroparticle physics

Obiettivi formativi: Il modello cosmologico standard. Evoluzione dell'universo dal punto di vista della fisica delle particelle elementari (FPE). Residui cosmologici. Obiettivo: le possibili soluzioni in FPE al problema della massa oscura ed i relativi test sperimentali.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Astroparticelle A	6	FIS/05 ASTRONOMIA E ASTROFISICA	Caratterizzanti	+	Astrofisico, geofisico e spaziale

Attività a libera scelta (15 CFU)

Denominazione in Inglese: Free choice

Obiettivi formativi: Il Consiglio di Corso di Studio potrà indicare ogni anno attività consigliate per la libera scelta. Altre scelte dovranno essere approvate dal Consiglio di Corso di Studio.

CFU: 15

Reteirabilità:

Modalità di verifica finale: esame scritto e/o orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Attività a libera scelta	15	NN No settore	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	A scelta dello studente

Attività a libera scelta (12 cfu) (12 CFU)

Denominazione in Inglese: Free choice (12 cfu)

Obiettivi formativi: Il Consiglio di Corso di Studio potrà indicare ogni anno attività consigliate per la libera scelta. Altre scelte

dovranno essere approvate dal Consiglio di Corso di Studio

CFU: 12 Reteirabilità: 1

Modalità di verifica finale: esame scritto e/o orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Attività a libera scelta (curr. IF)	12	NN No settore	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	A scelta dello studente

Biofisica (9 CFU)

Denominazione in Inglese: Biophysics

Obiettivi formativi: Il corso fornisce gli elementi di base di biofisica cellulare, e descrive le tecniche spettroscopiche e microscopiche (confocale ed a forza atomica) e di dinamica molecolare con applicazioni ai sistemi fisiologici ed alla nano-biomedicina

Objectivi formativi in Inglese: The course provides the basic knowledge of cell biophysics. It discusses the spectroscopy and microscopy (both confocal and at atomic force) techniques and the molecular dynamics with application to physiological systems and to nano-biomedicine.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Biofisica	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Biofisica cellulare // Cell Biophysics (6 CFU)

Denominazione in Inglese: Cell Biophysics

Obiettivi formativi: L'insegnamento fornisce le basi fisiche che caratterizzano i sistemi complessi che costituiscono l'unità più semplice della vita, la cellula. In particolare:

- termodinamica dei sistemi biologici lontani dall'equilibrio e ruolo della selezione naturale
- strutture alla nanoscala come piattaforme per i processi biologici e la loro regolazione
- applicazione di tecniche fisiche sperimentali allo studio dei processi fisici intracellulari, con particolare riguardo alla microscopia/nanoscopia ottica

// // //

The course revealing the physical bases permeating the complex physical systems that make up the simplest life's unit, the cell. In particular:

- thermodynamics of biological systems far of equilibrium and the role of natural selection
- nanoscale structures as platforms for biological processes and their regulation
- application of experimental physical techniques to the study of intracellular physical processes, with particular regard to optical microscopy / nanoscopy

CFU: 6

Reteirabilità: 1

Propedeuticità: nessuna propedeuticità. frequenza vivamente consigliata **Modalità di verifica finale:** prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
biofisica cellulare	6	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Biorobotica e sistemi complessi (9 CFU)

Denominazione in Inglese: BIOROBOTICS AND COMPLEX SYSTEMS

Obiettivi formativi: Active matter and smart materials: from cell motility to micro-robots: Physics and geometry of smart materials; Cell biophysics and micro-motility; Scaling laws for micro-nano robotics; Animal and robot locomotion. Systems Bioengineering: Processing of biological signals; Adaptive Oscillators; Computational Neuroscience, spiking neurons networks; Hybrid models for the development of neural interfaces

CFU: 9

Reteirabilità: 1

Propedeuticità: Nessuna propedeuticità, ma puo` essere utile aver seguito il corso di Sistemi Complessi o un corso sui sistemi dinamici, e avere qualche nozione di programmazione.

La frequenza è vivamente consigliata

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Biorobotica e sistemi complessi	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Buchi neri astrofisici (6 CFU)

Denominazione in Inglese: Astrophysical black holes

Obiettivi formativi: Obiettivi:

- proprietà dei buchi neri osservabili
- teoria delle perturbazioni su buchi neri
- stato attuale delle osservazioni

Objectives:

- observables properties of black holes
- black hole perturbation theory
- review of current observations

Descrizione

Il corso punta a presentare le proprietà dei buchi neri astrofisici osservati fino ad oggi affinché alla fine del corso gli studenti abbiano una visione aggiornata del campo. Le osservazioni descritte saranno sia nello spettro elettromagnetico che gravitazionale. Quindi, saranno descritti i metodi di misura impiegati in ambo gli ambiti. Verranno richiamate le soluzioni di Schwarzschild e Kerr, studiata la teoria delle perturbazioni per la metrica di Schwarzschild. Quest'ultima sara' utilizzata per introdurre il concetto di modi quasi-normali di un buco nero ed approfondire la loro utilita' come strumenti osservativi. Per quanto riguarda le osservazioni elettromagnetiche, verra' introdotta la teoria dei dischi di accrescimento e presentati alcuni aspetti osservativi fondamentali. A causa della sua interdisciplinarita', il corso si coordinerà con i corsi di gravita' sperimentale e processi astrofisici.

Description

The course aims at reviewing the astrophysical properties of black holes observed until now to bring students up to date with the field. We will describe both electro-magnetic and gravitational observations as well as the methods employed in both fields. The course will briefly recap the Schwarzschild and Kerr solutions and will then proceed into perturbation theory on Schwarzschild metric. The latter will be used to introduce the concept of quasi-normal modes of a black hole and to understand their usefulness as observational tool.

For the electro-magnetic observations, we will introduce accretion disks and review some of their observational properties. Because of its interdisciplinary nature, the course will coordinate with the experimental gravity and the astrophysical processes courses.

Reteirabilità: 1

Modalità di verifica finale: Seminario

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Buchi neri astrofisici	6	FIS/05 ASTRONOMIA E ASTROFISICA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Chimica Fisica Molecolare (9 CFU)

Denominazione in Inglese: Molecular chemical physics

Obiettivi formativi: Struttura delle molecole. Approssimazione di Born-Oppenheimer. Struttura elettronica di una molecola: orbitali molecolari e determinanti di Slater. Metodo di Hartree-Fock e relative equazioni. Energie orbitali e teorema di Koopmans. Sistemi a guscio chiuso: equazione di Roothaan; sistemi a guscio aperto: equazioni di Pople-Nesbet. Calcolo d osservabili molecolari. Superamento dell'approssimazione Hartree-Fock: metodo della interazione di configurazioni e uso della teoria delle perturbazioni. Studio della risposta lineare Cenno alla Teoria del Funzionale della Densità di carica (DFT).

Obiettivi formativi in Inglese: Molecular structure. Born-Oppenheimer approximation. Electronic structure of a molecule: molecular orbitals and Slater determinants.

Hartree-Fock method and basic equations. Orbital energies and Koopmans' theorem. Closed shell systems: Roothaan equations. Open shells systems: Pople-Nesbet equations. Calculation of molecular observables. Beyond the Hartree-Fock approximation: configuration interaction method and perturbation theories. Linear response theory. Basic concepts of density functional theory.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Chimica Fisica Molecolare	9	CHIM/02 CHIMICA FISICA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Computing methods for experimental physics and data analysis (9 CFU)

Denominazione in Inglese: Computing methods for experimental physics and data analysis

Obiettivi formativi: Lo scopo del corso e' l'insegnamento di tecniche di programmazione e di calcolo nel contesto

della fisica sperimentale e applicata sia per quanto riguarda i software necessari

all'elaborazione dei dati (data acquisition, reconstruction, simulation) sia per l'analisi dati di alto

livello anche attraverso l'utilizzo di strumenti sviluppati dall'industria.

Nel corso saranno affrontati alcuni linguaggi di programmazione (e.g. python) e librerie diffuse nel campo dell'analisi dati in fisica sperimentale e anche gli strumenti usati e sviluppati dalle industrie legate ai "big data". Infine saranno introdotte le problematiche relative al calcolo parallelo e i moderni strumenti di machine learning

Sono previsti due moduli su strumenti di programmazione di utilità trasversale per la fisica sperimentale e applicata, uno incentrato sugli strumenti di base (3 CFU) e uno di approfondimento (3 CFU), e un ulteriore modulo (3 CFU) a scelta tra due programmi di approfondimento specifici per High Energy Physics o Medical Image Analysis.

Argomenti e moduli:

1. Modulo

CFU: 9

Reteirabilità: 1

Modalità di verifica finale: Progetto a scelta tra alcuni temi proposti da realizzare con gli strumenti insegnati durante il corso. Esame orale in forma di seminario in cui verranno anche verificate le conoscenze acquisite sugli altri argomenti del corso che non siano parte del progetto presentato

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Computing methods for experimental physics and data analysis	9	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	Lezioni frontali+Esercitazioni+Laboratorio	Sperimentale applicativo

Computing methods for experimental physics and data analysis A (6 CFU)

Denominazione in Inglese: Computing methods for experimental physics and data analysis A

Obiettivi formativi: Lo scopo del corso e' l'insegnamento di tecniche di programmazione e di calcolo nel contesto della fisica sperimentale e applicata sia per quanto riguarda i software necessari all'elaborazione dei dati (data acquisition, reconstruction, simulation) sia per l'analisi dati di alto livello anche attraverso l'utilizzo di strumenti sviluppati dall'industria. Nel corso saranno affrontati alcuni linguaggi di programmazione (e.g. python) e librerie diffuse nel campo dell'analisi dati in fisica sperimentale e anche gli strumenti usati e sviluppati dalle industrie legate ai "big data". Infine saranno introdotte le problematiche relative al calcolo parallelo e i moderni strumenti di machine learning.

Sono previsti due parti su strumenti di programmazione di utilità trasversale per la fisica sperimentale e applicata, una incentrata sugli strumenti di base (3 CFU) e una di approfondimento (3 CFU).

Reteirabilità: 1

Propedeuticità: frequenza consigliata

Modalità di verifica finale: Progetto a scelta tra alcuni temi proposti da realizzare con gli strumenti insegnati durante il corso Esame orale in forma di seminario in cui verranno anche verificate le conoscenze acquisite sugli altri argomenti del corso che non siano parte del progetto presentato.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Computing methods for experimental physics and data analysis A	6	FIS/01 FISICA SPERIMENTALE	Affini o integrative	lezioni frontali+laboratorio	Attività formative affini o integrative

Condensed Matter Physics (9 CFU)

Denominazione in Inglese: Condensed Matter Physics

Obiettivi formativi: Il corso tratta argomenti di Fisica Teorica rilevanti per lo studio di sistemi fisici d'interesse per la materia condensata. Esso consiste in un nocciolo di 36 ore di argomenti di base essenziali per chiunque voglia specializzarsi in Fisica Teorica della Materia: la teoria della risposta lineare, la teoria diagrammatica delle perturbazioni, e la teoria di Landau dei liquidi di Fermi normali. Nella seconda parte di 24 ore si tratteranno argomenti avanzati, spesso d'interesse contemporaneo, che cambieranno di anno in anno. Per l'Anno Accademico 2020/2021 verranno discusse teorie elementari per lo studio del trasporto termoelettrico in sistemi a stato solido quali la teoria semiclassica di Boltzmann e la teoria quantistica di Landauer-Büttiker (12 ore). Si passerà quindi a trattare la fisica dell'effetto Hall quantistico in regime frazionario introducendo i concetti di carica elettrica frazionaria e spiegando l'origine dell'incompressibilità nel livello di Landau più basso (6 ore). Si concluderà discutendo un modello esattamente solubile (modello di Sachdev-Ye-Kitaev) come esempio paradigmatico di sistema a molti corpi che non è possibile inquadrare nell'ambito della teoria di Landau dei liquidi di Fermi normali (6 ore).

CFU: 9

Reteirabilità: 1

Propedeuticità: Si consiglia di aver seguito un corso dove e` stata affrontata la seconda quantizzazione (ad esempio Fisica Teorica 1 o Fisica Statistica)

Modalità di verifica finale: prova orale su progetto individuale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Advanced Condensed Matter Physics	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Cosmologia del primo universo (9 CFU)

Denominazione in Inglese: Early universe cosmology

Obiettivi formativi: Il corso si propone di fornire una panoramica coerente della cosmologia del primo Universo ed il formalismo necessario a comprendere la letteratura scientifica di base attinente.

I principali temi trattati saranno la cosmologia inflazionaria, la teoria delle fluttuazioni della radiazione cosmica di fondo; i processi di produzione di fondi di onde gravitazionali.

CFU: 9

Reteirabilità: 1

Propedeuticità: Relatività generale. Frequenza fortemente consigliata

Modalità di verifica finale: esame orale con possibilità di discutere una tesina basata sull'approfondimento di un articolo.

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito	Ī
---------------	-----	-----	-----------	----------------	--------	---

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Cosmologia del primo universo	9	FIS/05 ASTRONOMIA E ASTROFISICA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Cosmologia del primo Universo A (6 CFU)

Denominazione in Inglese: Early universe cosmology (A)

Obiettivi formativi: Il corso si propone di fornire una panoramica coerente della cosmologia del primo Universo ed il formalismo necessario a comprendere la letteratura scientifica di base attinente.

I principali temi trattati saranno la cosmologia inflazionaria, la teoria delle fluttuazioni della radiazione cosmica di fondo; i processi di produzione di fondi di onde gravitazionali.

CFU: 6 Reteirabilità: 1

Propedeuticità: relatività generale. La frequenza è fortemente consigliata **Modalità di verifica finale:** Prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Cosmologia del primo universo A	-	FIS/05 ASTRONOMIA E ASTROFISICA	Caratterizzanti	lezioni frontali + esercitazioni	Astrofisico, geofisico e spaziale

Cromodinamica quantistica (9 CFU)

Denominazione in Inglese: Quantum chromodynamics

Obiettivi formativi: Simmetrie delle interazioni forti, teorie di gauge non-abeliane, libertà asintotica delle interazioni forti, lagrangiane fenomenologiche di bassa energia, simmetria chirale, il problema U(1), violazioni forti di CP.

Obiettivi formativi in Inglese: Symmetries of strong interactions, non-abelian gauge theories, asymptotic freedom of strong interactions, phenomenological lagrangians allow energy, chiral symmetry, the U(1) problem, strong CP violations.

CFU: 9

Reteirabilità:

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Propedeuticità: Fisica Teorica 1

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Cromodinamica quantistica	9	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Caratterizzanti	+	Teorico e dei fondamenti della Fisica

Current trends in quantum matter (3 CFU)

Denominazione in Inglese: Current trends in quantum matter

Objectivi formativi: At the end of the course activities, students will have enhanced their understanding of how quantum phenomena occurring in different condensed-matter and atomic-molecular systems, at bulk and nanoscale level, are interwoven. The course comprises the discussion of a series of seminars, which will be planned every year, according to the most cutting edge quantum matter physics of the moment. Topics will include:

- Strongly correlated many-body systems, in particular electrons and ultracold atoms
- Fluids of light
- Cavity modified interactions
- Systems in reduced dimensionality
- Driven-dissipative open quantum systems
- Quantum metrology
- Analog quantum systems

The seminars will be delivered by theorists and experimentalists leading these fields of research. Overviews will be provided on concepts and tools, and on pertinent models of interacting quantum matter, with an interdisciplinary approach.

CFU: 3 Reteirabilità: 1

Modalità di verifica finale: oral, consisting of a dissertation on an agreed topics

Lingua ufficiale: Inglese

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Current Trends in Quantum Matter	3	FIS/03 FISICA DELLA MATERIA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Dinamica non lineare (9 CFU)

Denominazione in Inglese: Nonlinear dynamics

Obiettivi formativi: Gli obiettivi principali di questo corso sono quelli di promuovere l'acquisizione di competenze teoriche, sia di base che avanzate, per lo studio di sistemi dinamici nonlineari per i quali l'evoluzione temporale dei corrispondenti stati è determinata da leggi esclusivamente deterministiche. Questi sistemi dinamici (anche semplici) possono sviluppare comportamenti molto complessi, come ad esempio il caos deterministico. Pertanto, un'importante finalità del corso è quella di formare gli studenti in modo che siano in grado di utilizzare i principali approcci formali per lo studio e la caratterizzazione dinamica di sistemi nonlineari. Infine, per concretizzare l'applicazione dei principali approcci e metodi analitici del corso ad esempi concreti, una particolare attenzione verrà dedicata allo svolgimento di esercizi (in aula e per casa).

The main objectives of this course are to promote the acquisition of theoretical skills, both basic and advanced, for the study of nonlinear dynamical systems for which the time evolution of the corresponding states is determined, exclusively, by deterministic laws. These dynamical systems (also simple) can develop very complex behaviors, such as deterministic chaos. Therefore, an important purpose of the course is to train students so that they are able to use the main formal approaches for the study and the dynamical characterization of nonlinear systems. Finally, to concretize the application of the main analytical approaches and methods of the course to concrete examples, particular attention will be paid to carrying out exercises (in the classroom and at home).

CFU: 9

Reteirabilità: 1

Propedeuticità: Sono richieste conoscenze di analisi matematica, teoria delle equazioni differenziali ordinarie, geometria e fisica acquisite durante la laurea triennale. Infine è fortemente consigliata la frequenza delle lezioni del corso.

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Dinamica nonlineare	9	FIS/03 FISICA DELLA MATERIA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Dosimetria (6 CFU)

Denominazione in Inglese: Dosimetry

Obiettivi formativi: Questo corso presenta una introduzione alla dosimetria delle radiazioni ionizzanti. Vengono illustrati concetti quali l'equilibrio delle particelle cariche, il teorema di reciprocità e la teoria delle cavità applicata a semplici calcoli di dose.

Objectivi formativi in Inglese: This course is intended as an introduction to ionizing radiation dosimetry. Several concepts are presented such as charged-particle equilibrium and the reciprocity theorem. The principal cavity theories are used to perform simple dose calculations.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame scritta e orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Dosimetria	6	FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	J	lezioni frontali + esercitazioni	Attività formative affini o integrative

Elaborazione dei segnali Biomedici (6 CFU)

Denominazione in Inglese: Biomedical Signal Processing

Obiettivi formativi: Fornire conoscenza su metodologie avanzate di analisi ed integrazione di segnali: filtri ottimi / adattativi, Total Least Squares, analisi a Componenti Indipendenti; rivelazione di eventi, classificazione, apprendimento e validazione. Obiettivi formativi in Inglese: Providing knowledge on advanced methods for signal analysis and integration: optimal / adaptive filtering, Total Least Squares, Independent Component Analysis; event detection, classification, learning and validation.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli Regolamento Fisica Denominazione **CFU** SSD Caratteristica **Ambito Tipologia** Elaborazione dei segnali 6 FIS/01 FISICA Affini o integrative lezioni frontali Attività SPERIMENTALE formative Biomedici esercitazioni affini o integrative

Elaborazione dei Segnali per la Fisica (6 CFU)

Denominazione in Inglese: Signal processing for Physics **Obiettivi formativi:** Caratteristiche dei segnali di interesse fisico.

Trasformate di Fourier discrete e a tempo discreto.

Trasformata z.

Sistemi lineari tempo invarianti ad impulso finito ed infinito.

Filtri digitali: principi di disegno.

Segnali casuali: teorema di Wiener-Kintchine.

Teorema del campionamento.

Conversione D/A e A/D.

Stime spettrali.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: esame orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Elaborazione dei segnali per la Fisica	6	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	lezioni frontali + esercitazioni	Sperimentale applicativo

Elementi di fisiologia, fisiopatologia e diagnostica (6 CFU)

Denominazione in Inglese: Fundamentals of physiology, physiopathology and diagnostics

Obiettivi formativi: Il corso fornisce elementi di base di fisiologia e fisiopatologia: dalla cellula al tessuto all'organo/apparato, ai sistemi, all'organismo. Sono trattati esempi di integrazione delle metodologie fisiche nelle provedure cliniche di diagnosi e terapia.

CFU: 6 Reteirabilità: 1

Modalità di verifica finale: orale Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Elementi di fisiologia, fisiopatologia e diagnostica	6	BIO/09 FISIOLOGIA	Altre attività - scelta libera dello studente	lezioni frontali	A scelta dello studente

Elettrodinamica dei mezzi continui (6 CFU)

Denominazione in Inglese: Electrodynamics of continuous media

Obiettivi formativi: Il corso vuole offrire complementi di elettromagnetismo,

elettrodinamica e ottica lineare e nonlineare orientati ad applicazioni moderne quali la plasmonica, i metamateriali, le altissime intensità.

The course introduces some advanced topics in electrodynamics and optics (plasmonics, metamaterials, nonlinear effects, superintense fields) along with their applications.

Objectivi formativi in Inglese: Relativistic plasmas in superintense electromagnetic fields: basic theory, characteristic phenomena, application to inertial fusion and charged particle acceleration.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Elettrodinamica dei mezzi continui	6	FIS/03 FISICA DELLA MATERIA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Elettr&988818796950/First@FU)

Denominazione in Inglese: Electronics and Sensors

Obiettivi formativi: Il corso vuole fornire gli elementi di base dell'elettronica moderna e dei principali componenti attivi e passivi. Verranno forniti inoltre elementi di teoria e trattamento dei segnali e numerosi esempi ed applicazioni.

Objective formative in Inglese: The course is aimed to provide the basic concepts of the modern electronics and of the principal active and passive components. Elements of signal theory and processing will be provided together with several examples and applications.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Elettronica e sensori	6	FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	3	lezioni frontali + esercitazioni	Attività formative affini o integrative

Esperimenti fondamentali nella fisica delle particelle elementari (3 CFU)

Denominazione in Inglese: Fundamental experiments in elementary particles physics

Obiettivi formativi: Presentazione e commento di esperimenti particolarmente significativi nella storia delle particelle elementari dalla seconda metà del 1900.

CFU: 3

Reteirabilità: 1

Modalità di verifica finale: Seminario su un esperimento a scelta dello studente tra quelli discussi a lezione o su un esperimento concordato con il docente.

Il seminario sarà basato su slides ed avrà una durata di 45 minuti circa.

Successivamente all'esposizione lo studente dovrà rispondere ad eventuali domande del docente sull'argomento del seminario e sugli argomenti svolti a lezione.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
ESPERIMENTI FONDAMENTALI NELLA FISICA DELLE PARTICELLE ELEMENTARI	3	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	A scelta dello studente

Fisica ai collisionatori adronici (9 CFU)

Denominazione in Inglese: Hadron Collider Physics

Obiettivi formativi:

Fisica delle particelle elementari ai collisionatori adronici, specialmente protone-protone e protone-antiprotone. Lo studio delle interazioni tra quark e gluoni, costituenti del protone, ha permesso molte scoperte fondamentali nella fisica delle particelle quali la scoperta del bosoni intermedi W e Z , del quark top e del bosone di Higgs.. Saranno presentati i principali risultati ottenuti agli collisionatori ISR, SPS collider , Tevatron e LHC insieme a una discussione delle prospettive future. Nella parte finale saranno esaminati in dettaglio alcuni degli articoli che descrivono i risultati scientifici piu' importanti ottenuti a LHC e effettuata una analisi di dati reali raccolti.

Elementary particle physics at the hadronic colliders, proton-proton and proton-antiproton. The study of the quark and gluon interactions, which are the proton constituents, have provided many fundamental discoveries in particle physics such as those of bosons W, Z, top-quark and Higgs. A review of results obtained at the colliders: ISR, SPS collider, Tevatron and LHC is presented together with a discussion on future perspectives.

In the final period of the course some scientific articles reporting important results obtained at LHC will be examined and an analysis of real data collected will be done.

CFU: 9 Reteirabilità: 1

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
fisica ai collisionatori adronici	9	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Fisica ai collisionatori adronici S (6 CFU) Regolamento Fisica

Denominazione in Inglese: Hadron Collider Physics S

Obiettivi formativi: Fisica delle particelle elementari ai collisionatori adronici, specialmente protone-protone e protone-antiprotone. Lo studio delle interazioni tra quark e gluoni, costituenti del protone, ha permesso molte scoperte fondamentali nella fisica delle particelle quali la scoperta del bosoni intermedi W e Z, quark top e del bosone di Higgs.. Saranno presentati i principali risultati ottenuti agli collisionatori ri ISR, SPS collider, Tevatron e LHC insieme a una discussione delle prospettive future.

Elementary particle physics at the hadronic colliders, proton-proton and proton-antiproton. The study of the quark and gluon interactions, which are the proton constituents, have provided many fundamental discoveries in particle physics such as the discovery of bosons W, Z, top-quark and Higgs. A review of the results obtained at the accelerators: ISR, SPS collider and Tevatron and LHC is presented together with a discussion on the future perspectives

CFU: 6 Reteirabilità: 1

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
hadron colliders	6	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Affini o integrative		Attività formative affini o integrative

Fisica applicata ai beni culturali (9 CFU)

Denominazione in Inglese: Physics applied to cultural heritage

Obiettivi formativi: L'insegnamento si prefigge di fornire un quadro ampio delle problematiche relative ai campi di indagine propri della fisica applicata ai beni culturali, trattando anche alcuni aspetti di base della conservazione, del restauro e dell'informatica. In tal modo gli studenti potranno avere una conoscenza, competenza e capacità di valutare gli ambiti ed i limiti di applicabilità delle specifiche metodologie (metodiche e tecniche fisiche, chimiche, mineralogicopetrografiche, naturalistiche e informatiche innovative necessarie allo studio e alla conservazione dei Beni culturali). Attraverso l'illustrazione di diversi casi studio, l'insegnamento intende inoltre fornire agli studenti alcuni esempi di linee di ricerca nel campo della diagnostica dei Beni culturali, dei metodi di datazione e provenienza, nonché della caratterizzazione dei materiali utilizzati nel settore dei Beni culturali.

Obiettivi formativi in Inglese: The course aims to provide a broad framework of the problems relating to the fields of investigation of physics applied to cultural heritage, also dealing with some basic aspects of conservation, restoration and information technology. In this way, students will be able to have the knowledge, competence and ability to evaluate the areas and limits of applicability of the specific methodologies (physical, chemical, mineralogical, petrographic, naturalistic and innovative IT methods and techniques necessary for the study and conservation of cultural heritage). Through the illustration of various case studies, the course also intends to provide students with some examples of research lines in the field of diagnostics of cultural heritage, dating and provenance methods, as well as the characterization of materials used in the cultural heritage sector.

CFU: 9

Reteirabilità: 1

Propedeuticità: Nessuna Modalità di verifica finale: Orale Lingua ufficiale: Italiano

Modul

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica applicata ai beni culturali	9	FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	A scelta dello studente

Fisica dei Biosistemi (9 CFU)

Denominazione in Inglese: Physics of Bio-systems

Obiettivi formativi: L'insegnamento si focalizza sui principi fisici che caratterizzano la materia attiva, partendo dalla comprensione dei meccanismi che regolano i processi nei sistemi biologici "modello" per arrivare alla caratterizzazione di sistemi e materiali "bio-ispirati", introducendo nuovi modelli ed approcci di particolare rilevanza nell'ambito della scienza dei materiali.

Particolare attenzione è dedicata alle strutture, alle simmetrie, alle interazioni molecolari, ai processi di self-assembly, alle proprietà meccaniche e meccano-sensibili dei sistemi biologici coinvolti nello sviluppo di attuatori e materiali innovativi.

Inoltre si introducono le più recenti tecniche di imaging, sviluppate nel campo della microscopia ottica a fluorescenza e a super-risoluzione, e le loro applicazioni allo studio dei processi e delle interazioni molecolari in sistemi biologici di interesse. The course will focus on the physics relevant for active matter, starting from the understanding of the mechanisms regulating the processes in "model" biological systems to get to the characterization of "bio-inspired" systems and biomimetic materials, introducing new models and approaches of strong relevance in materials science. Attention will be given to structures, symmetries, molecular interactions, self-assembly processes, mechanical and mechano-sensitive properties of biological systems relevant in the development of innovative actuators and materials. The most recent imaging techniques in the field of fluorescence and super-resolution optical microscopy will be covered, along with their applications to the study of processes and of the molecular interactions in relevant biological systems.

CFU: 9 Reteirabilità: 1

Propedeuticità: frequenza vivamente consigliata

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica dei Biosistemi	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Fisica dei dispositivi elettronici (6 CFU)

Denominazione in Inglese: Electronic devices physics

Obiettivi formativi: Il corso affronta lo studio dei fenomeni fisici che governano il funzionamento dei dispositivi a semiconduttore al fine di formulare i modelli fisico-matematici che ne consentono l'applicazione nei circuiti di elaborazione dei segnali, sia elettronici sia optoelettronici.

Obiettivi formativi in Inglese: The course addresses the study of physical phenomena that govern the operation of semiconductor devices

in order to formulate the physical and mathematical models that enable their application in signal processing circuits, both electronic and optoelectronic.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica dei dispositivi elettronici	6	FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	Ŭ	+ esercitazioni	Attività formative affini o integrative

Fisica dei dispositivi fotonici (9 CFU)

Denominazione in Inglese: Photonic devices physics

Obiettivi formativi: Il corso mira a fornire una conoscenza dei principali costituenti di un laser a stato solido: cavita', sistema di pompaggio e mezzo attivo, dell'analisi delle dinamiche fisiche di un sistema laser, e una comprensione dei principi fisici di funzionamento e delle caratteristiche dei principali dispositivi optoelettronici, con l'attenzione rivolta in buona parte ai semiconduttori ed ai laser in particolare.

Proprietà ottiche di nanomateriali, con particolare riferimento alla risonanza plasmonica di superficie localizzata in sistemi zero-dimensionali. La teoria di Mie e le sue semplificazioni ed estensioni. Possibilità di combinare materiali differenti sulla singola nanostruttura. Applicazioni in campo tecnologico e biomedico. Saranno inoltre affrontatei(mutuando 8 ore di lezione da un corso di chimica) i seguenti argomenti:

"Proprietà ottiche di nanomateriali, con particolare riferimento alla risonanza plasmonica di superficie localizzata in sistemi zero-dimensionali. La teoria di Mie e le sue semplificazioni ed estensioni. Possibilità di combinare materiali differenti sulla singola nanostruttura. Applicazioni in campo tecnologico e biomedico."

Objectivi formativi in Inglese: The course aim is to offer the knowledge of the main constituents of a solid state laser system: pumping system, cavity, active medium, the analysis of the physical dynamics of a laser system, and an advanced understanding of the physical operating principles and characteristics of the most relevant optoelectronic devices, with a strong focus on semiconductors, and lasers in particular.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica dei dispositivi fotonici	9	FIS/03 FISICA DELLA MATERIA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Fisica dei materiali in bassa dimensionalità (6 CFU)

Denominazione in Inglese: New materials

Obiettivi formativi:

Il corso presenta un percorso sia teorico che sperimentale sui materiali a bassa dimensionalità. Il principale obiettivo del corso è di fornire sia una base teorica per la comprensione delle proprietà di trasporto dei nanodispositivi che una introduzione alle principali tecniche sperimentali per il loro studio. In questo contesto, i principali obiettivi saranno:

- fornire un quadro generale della fisica dei sistemi mesoscopici, evidenziando aspetti quantistici quali l'interferenza e la quantizzazione. Verranno illustrati recenti risultati sperimentali rilevanti e loro spiegazione teorica, con particolare riferimento a sistemi in bassa dimensionalità. Verranno infine affrontati concetti quali protezione topologica e loro realizzazione in sistemi a stato solido.
- fornire una base delle tecniche sperimentali con particolare riferimento alla microscopia e fisica delle superfici. Verranno descritte tecniche di microscopia spm (scanning probe microscopy) con particolare riferimento alla microscopia STM (Scanning Tunneling Microscopy), tecniche per la caratterizzazione di superfici, funzionalizzate e non, quali LEED (Low Energy Electron Diffraction) e spettroscopia Auger. Verranno illustrate particolari applicazioni di queste tecniche nello studio di nuovi materiali e sistemi in bassa dimensionalità.

CFU: 6 Reteirabilità: 1

Modalità di verifica finale: Prova finale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Materiali Innovativi	6	FIS/03 FISICA DELLA MATERIA	Altre attività - scelta libera dello studente	+	A scelta dello studente

Fisica dei plasmi (9 CFU)

Denominazione in Inglese: Plasma physics

Obiettivi formativi: Fondamenti:

Definizione di plasma elettromagnetico

Lunghezze e tempi caratteristici

Frequenza di plasma

Termodinamica statistica di un plasma

Ruolo delle collisioni, tempo di rilassamento e tempo dinamico

Necessita' di una descrizione microscopica, nonlinearita' e nonlocalita' della dinamica di un plasma

Funzione di distribuzione ed equazione di Vlasov

Teoria fenomenologica della turbolenza nei fluidi.

Cenni alla turbolenza nei plasmi.

Variabili macroscopiche:

Equazioni dei momenti: modello a due fluidi e a singolo fluido

La legge di Ohm per plasmi magnetizzati

La descrizione magneto-idrodinamica (MHD) di un plasma

Equilibrio e stabilità. Linearizzazione e analisi ai modi normali

Esempi di propagazione di onde in teoria fluida:

onde longitudinali

onde elettromagnetiche

onde MHD

Principali instabilità nella descrizione MHD

Variabili microscopiche:

Descrizione microscopica (cinetica): proprieta' dell'equazione di Vlasov

Onde di Langmuir in teoria cinetica e risonanza di Landau.

Onde e instabilita' in plasmi anisotropi magnetizzati: descrizione cinetica e limite fluido

Dinamica nonlineare:

Cenni di dinamica non lineare di un plasma: la approssimazione quasilineare e i processi di diffusione anomala Cenni di teoria della turbolenza in un plasma

CFU: 9

Reteirabilità: 1

Modalità di verifica finale: esame orale

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica dei plasmi	9	FIS/05 ASTRONOMIA E ASTROFISICA	Caratterizzanti	lezioni frontali + esercitazioni	Astrofisico, geofisico e spaziale

Fisica dei sistemi a molti corpi S (6 CFU)

Denominazione in Inglese: Many-body physics S

Obiettivi formativi: Nello svolgimento del corso "Fisica dei sistemi a molti corpi" verra` di volta in volta indicato quali parti non saranno oggetto della verifica finale del corso in questa versione da 6 CFU

CFU: 6 Reteirabilità: 1

Modalità di verifica finale: Esame orale

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica dei sistemi a molti corpi S	6	FIS/03 FISICA DELLA MATERIA	Affini o integrative		Attività formative affini o integrative

Note: Vedere

Fisica del mezzo diffuso cosmico (6 CFU)

Denominazione in Inglese: Diffuse Matter in Space: the Interstellar and Intergalactic Medium

Obiettivi formativi: Photoionization and photodissociation regions

Radiative processes and nebular diagnostics

Neutral hydrogen: Lyman series absorption, resonance lines

Molecular emission

Dust properties and astrochemistry Magnetic fields in diffuse media

Continuum processes: Thermal emission from gas and dust

Continuum processes: Nonthermal emission: synchrotron, gamma rays

Turbulence and dynamical processe

CFU: 6 Reteirabilità: 1

Propedeuticità: frequenza consigliata

Modalità di verifica finale: a tipical (short) paper on a topic related to the material of the course and discussion.

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Mezzi di diffusione interstellare e intergalattici	6	FIS/05 ASTRONOMIA E ASTROFISICA	Affini o integrative	lezioni frontali	Attività formative affini o integrative

Fisica del plasma sperimentale (6 CFU)

Denominazione in Inglese: Experimental plasma physics

Obiettivi formativi: Vengono fornite le conoscenze di base nell'ambito della fisica del plasma sperimentale. Argomenti: parametri di plasma; ionizzazione di un gas e formazione di un plasma; sorgenti di plasma e confinamento; fenomeni radiativi e diagnostiche di plasma.

Objectivi formativi in Inglese: The course intends to give the basic knowledge in the field of experimental plasma physics research. Topics: basic plasma parameters; gas ionization and plasma formation; plasma sources and confinement; radiative phenomena and diagnostic techniques.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica del plasma sperimentale	6	FIS/01 FISICA SPERIMENTALE	Affini o integrative		Attività formative affini o integrative

Fisica del suono (6 CFU)

Denominazione in Inglese: Physics of sound

Obiettivi formativi: Il corso introduce lo studente all'acustica, con enfasi sulla fisica del suono, degli strumenti musicali e dell'elaborazione elettronica e digitale di segnali acustici.

The course provides an introduction to acoustics, with focus on the physics of sound, of musical instruments and electronic digital processing of sound signals.

CFU: 6

Propedeuticità: La frequenza alle lezioni è fortemente consigliata.

Modalità di verifica finale: Prova di esame: orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica del suono	6	FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	Ğ	lezioni frontali + esercitazioni	Attività formative affini o integrative

Fisica delle Onde Gravitazionali (9 CFU)

Denominazione in Inglese: Gravitational Wave Physics

Obiettivi formativi: Il corso presenta in maniera unitaria le problematiche della ricerca nel campo delle onde gravitazionali. Nella prima parte vengono esaminate le caratteristiche della radiazione gravitazionale, generazione e rivelazione, come previste dalla Relatività Generale. Successivamente sono descritte le varie sorgenti e le loro proprietà di emissione in relazione al contesto dell'astrofisica multimessaggera. Si discutono le tecniche di elaborazione del segnale che consento di estrarre in presenza di rumore la massima informazione dai dati, giungendo, dopo una descrizione dei rivelatori attualmente in funzione, agli ultimi risultati ottenuti. L'ultima parte è dedicata ad approfondire il funzionamento dei rivelatori e i settori dove le attività di ricerca e sviluppo sono più attive.

Obiettivi formativi in Inglese: Research in Gravitational Wave Physics is presented in a unitary form. Gravitational wave emission and detection, as predicted by General Relativity, is described. Then the various sources and their characteristics are described, in view of gravitational wave detection. Signal processing methods to extract the maximum information out of noisy data are shown; after a description of current detectors, the most recent results are discussed. In the last part detectors are studied in greater detail with the areas where research and development is most active.

CFU: 9 Reteirabilità: 1

Modalità di verifica finale: Prova Orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica delle Onde Gravitazionali	9	FIS/01 FISICA SPERIMENTALE	Affini o integrative	lezioni frontali	Attività formative affini o integrative

Fisica delle Onde Gravitazionali A (6 CFU)

Denominazione in Inglese: Gravitational Wave Physics (A)

Obiettivi formativi: Il corso presenta in maniera unitaria le problematiche della ricerca nel campo delle onde gravitazionali. Nella prima parte vengono esaminate le caratteristiche della radiazione gravitazionale, generazione e rivelazione, come previste dalla Relatività Generale. Successivamente sono descritte le varie sorgenti e le loro proprietà di emissione in relazione al contesto dell'astrofisica multimessaggera; discutono le tecniche di elaborazione del segnale che consento di estrarre in presenza di rumore la massima informazione dai dati, giungendo, dopo una descrizione dei rivelatori attualmente in funzione, agli ultimi risultati ottenuti. L'ultima parte è dedicata ad approfondire il funzionamento dei rivelatori e i settori dove le attività di ricerca e sviluppo sono più attive.

Objectivi formativi in Inglese: Research in Gravitational Wave Physics is presented in a unitary form. Gravitational wave emission and detection, as predicted by General Relativity, is described. Then the various sources and their characteristics are described, in view of gravitational wave detection. Signal processing methods to extract the maximum information out of noisy data are shown; after a description of current detectors, the most recent results are discussed. In the last part detectors are studied in greater detail with the areas where research and development is most active

CFU: 6 Reteirabilità: 1

Modalità di verifica finale: Prova Orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica delle Onde Gravitazionali A	6	FIS/01 FISICA SPERIMENTALE	Affini o integrative		Attività formative affini o integrative

Fisica delle Particelle (9 CFU)

Denominazione in Inglese: Particle Physics

Obiettivi formativi: Il corso è dedicato allo studio della Fisica delle Particelle Elementari. I processi principali del Modello Standard Elettrodebole e della Cromodinamica Quantistica verranno presentati. sia negli aspetti fenomenologici che nelle problematiche sperimentali. È prevista anche un'introduzione alla fisica dei neutrini e alla violazione della simmetria CP. Infine verranno discussi le prospettive e gli sviluppi futuri.

The course is devoted to the Elementary Particle Physics. The most important processes of the Electroweak Standard Model and of the Quantum Chromodynamics will be presented at phenomenological level together with the related experimental issues. An introduction to the neutrino and to the CP violation physics will be also provided. Finally future perspectives and developments will be discussed.

CFU: 9

Reteirabilità: 1

Propedeuticità: Interazioni Fondamentali. Può essere utile aver seguito il corso di Fisica Teorica 1. La frequenza alle lezioni è fortemente considiata.

Modalità di verifica finale: esame orale

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica delle Particelle	9	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Caratterizzanti	+ esercitazioni	Microfisico e della struttura della materia

Note: Il corso verrà erogato in italiano se tutti gli studenti lo richiedono

Fisica delle Particelle S (6 CFU)

Denominazione in Inglese: Particle Physics

Obiettivi formativi: Il corso è dedicato allo studio della Fisica delle Particelle Elementari. I processi principali del Modello Standard Elettrodebole e della Cromodinamica Quantistica verranno presentati. sia negli aspetti fenomenologici che nelle problematiche sperimentali. È prevista anche un'introduzione alla fisica dei neutrini e alla violazione della simmetria CP . Infine verranno discussi le prospettive e gli sviluppi futuri .

The course is devoted to the Elementary Particle Physics. The most important processes of the Electroweak Standard Model and of the Quantum Chromodynamics will be presented at phenomenological level together with the related experimental issues. An introduction to the neutrino and to the CP violation physics will be also provided. Finally future perspectives and developments will be discussed.

CFU: 6

Reteirabilità: 1

Propedeuticità: Interazioni Fondamentali. Può essere utile aver seguito il corso di Fisica Teorica 1. La frequenza alle lezioni

è fortemente consigliata.

Modalità di verifica finale: Prova orale

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica delle particelle S	6	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Note: Il corso verrà erogato in italiano se tutti gli studenti lo richiedono.

Fisica delle stelle compatte (9 CFU)

Denominazione in Inglese: Compact stars physics

Obiettivi formativi: Studio della struttura delle stelle nane bianche e delle stelle di neutroni a partire dalle proprieta` della materia ad alte densita`. Fenomeni astrofisici associati: Pulsars, Supernovae, GRBs.

Obiettivi formativi in Inglese: Study of the structure of White Dwarfs and Neutron Strars starting from the properties of high density matter. Study of the associated astrophysical phenomena: Pulsars, Supernovae, GRBs.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica delle stelle compatte	9	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Fisica delle stelle compatte A (6 CFU)

Denominazione in Inglese: Physics of Compact Stars A

Obiettivi formativi: Studio della struttura delle stelle nane bianche e delle stelle di neutroni a partire dalle proprieta` della materia ad alte densita`. Fenomeni astrofisici associati: Pulsars, Supernovae, GRBs.

Obiettivi formativi in Inglese: Study of the structure of White Dwarfs and Neutron Strars starting from the properties of high density matter. Study of the associated astrophysical phenomena: Pulsars, Supernovae, GRBs.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica delle stelle compatte A	6	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Fisica delle Superfici e Interfacce (3 CFU)

Denominazione in Inglese: Surfaces and interfaces physics

Obiettivi formativi: Il corso consiste in una generale introduzione alla fisica delle superfici e interfacce che mette a fuoco i concetti di base piuttosto che i dettagli specifici, ed esplora i fenomeni fisici sui quali si basano le più importanti tecniche e metodi di analisi superficiale.

Objectivi formativi in Inglese: The course consists of a general introduction that focuses on the basic concepts of the physics of surfaces and interfaces, and explores the physical phenomena underlying relevant techniques and methods of surface analysis.

CFU: 3

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica delle Superfici e Interfacce	3	FIS/03 FISICA DELLA MATERIA	Affini o integrative	+ esercitazioni	Attività formative affini o integrative

Fisica dello stato solido (9 CFU)

Denominazione in Inglese: Solid State Physics

Obiettivi formativi: Elettroni in un potenziale periodico unidimensionale. Descrizione geometrica dei cristalli: reticoli diretti e reciproci. Il gas di elettroni. Livelli di energia elettronici nei solidi. Dinamica reticolare. Proprieta' ottiche di semiconduttori e isolanti. Aspetti fondamentali della fisica dei semiconduttori.

Obiettivi formativi in Inglese: Electrons in a one-dimensional periodic potential. Geometric description of crystals: direct and reciprocal lattices. Electron gas. Electronic energy levels in solids. Lattice dynamics. Optical properties of semiconductors and insulators. Fundamental aspects of semiconductor physics.

CFU: 9

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

	CFU	SSD	Tipologia	Caratteristica	Ambito	
--	-----	-----	-----------	----------------	--------	--

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica dello stato solido	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Fisica medica I (9 CFU)

Denominazione in Inglese: Medical Physics 1

Obiettivi formativi: Il corso fornisce le basi fisiche delle tecniche diagnostiche in radiologia, in medicina nucleare con radioisotopi emettitori di singolo fotone e di positroni, e delle tecniche usate in radioterapia. In particolare vengono approfonditi i seguenti argomenti: interazioni radiazione materia; radioattività e decadimenti radioattivi; radiografia, tomografia computerizzata e tomosintesi; imaging in medicina nucleare (SPECT, PET); risonanza magnetica nucleare; ecografia; radiobiologia e radioterapia convenzionale.

The course discusses the physics of the diagnostic techniques in X-ray radiology (radiography, CT, tomosynthesis), nuclear medicine (SPECT, PET), ultrasonography and magnetic resonance imaging. It also provides elements of radiobiology and conventional radiotherapy.

Obiettivi formativi in Inglese: The course discusses the physics of the diagnostic techniques in X-ray Radiology, Nuclear Medicine, Ultrasonography and Magnetic Resonance Imaging. It also provides elements of Radiobiology, Radiotherapy and Molecular Imaging.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica medica	9	FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	Caratterizzanti	lezioni frontali + esercitazioni	Sperimentale applicativo

Fisica medica II (6 CFU)

Denominazione in Inglese: MEDICAL PHYSICS II

Obiettivi formativi: Introduzione all'imaging molecolare

Tomografia a Emissione di Positroni (PET): strumentazione e metodi avanzati

Imaging ibrido PET/CT: correzione per attenuazione

Imaging ibrido PET/MR: tecnologia e metodi

Strumentazione per imaging preclinico CT, SPECT/CT, PET/CT e PET/MR

Principi di imaging ottico: imaging a fluorescenza e bioluminescenza

Imaging a luce Cerenkov (CLI)

Cenni di imaging a ultrasuoni e imaging fotoacustico

Radioterapia con particelle cariche

Introduzione alla ricostruzione delle immagini tomografiche

Metodi di ricostruzione analitici Metodi di ricostruzione iterativi

CFU: 6

Reteirabilità: 1

Propedeuticità: frequenza vivamente consigliata.

propedeuticità: fisica medica 1

Modalità di verifica finale: PROVA ORALE

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica medica II		FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	Caratterizzanti	lezioni frontali + esercitazioni	Sperimentale applicativo

Fisica nucleare (9 CFU)

Denominazione in Inglese: Nuclear physics

Obiettivi formativi: Proprieta` generali dei nuclei atomici e dell'interazione nucleare. Decadimenti nucleari e radioattivita`. Passaggio della radiazione nella materia. Modelli del nucleo atomico. Reazioni nucleari. Fusione nucleare e nucleosintesi stellare. Fissione Nucleare e cenni ai reattori a fissione nucleare.

General properties of atomic nuclei and nuclear interaction. Nuclear decays and radioactivity. Interaction of radiation with matter. Nuclear models. Nuclear reactions. Nuclear fusion and stellar nucleosynthesis. Nuclear fission and nuclear fission reactors (hints).

Objectivi formativi in Inglese: Structure and models of nuclei, pion exchange and chiral symmetry, nuclear reactions, hydrogen and CNO cycles, production of heavy elements.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica nucleare	9	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Fisica Statistica (9 CFU)

Denominazione in Inglese: Statistical physics

Obiettivi formativi: Il corso fornisce un'introduzione alla meccanica statistica di equilibrio, per sistemi classici e quantistici. In particolare si occupa di:

- proprietà termodinamiche dei gas di particelle classiche interagenti (equazione di van der Waals, metodi perturbativi ed espansioni in cluster);
- transizioni di fase e teoremi di Lee-Yang;
- fenomeni critici (teoria di Ginzburg-Landau, cenni sul gruppo di rinormalizzazione e universalità);
- statistiche quantistiche e gas quantistici non interagenti (condensazione di Bose-Einstein; proprietà magnetiche dei gas di fermoni liberi);
- seconda quantizzazione e sistemi a molti corpi quantistici (gas di Bose debolmente interagenti; sistemi fermionici su reticolo);
- transizioni di fase quantistiche (soluzione del modello di Ising quantistico 1D).

The course provides an introduction to equilibrium statistical mechanics, both for classical and for quantum systems. In particular, the following topics will be covered:

- thermodynamic properties of interacting classical gases (van der Waals equation; perturbative methods and cluster expansions);
- phase transitions and Lee-Yang theorems;
- critical phenomena (Ginzburg-Landau theory, introduction to the renormalization group and universality);
- quantum statistics and noninteracting quantum gases (Bose-Einstein condensation; magnetic properties of free-fermion gases);
- second quantization and quantum many-body systems (weakly interacting Bose gases; fermionic systems on a lattice); quantum phase transitions (solution of the 1D quantum Ising model).

Objettivi formativi in Inglese: The course provides an introduction to equilibrium statistical mechanics, both for classical and for quantum systems. In particular, the following topics will be covered:

- thermodynamic properties of interacting classical gases (van der Waals equation; perturbative methods and cluster expansions);
- phase transitions and Lee-Yang theorems;
- critical phenomena (Ginzburg-Landau theory, introduction to the renormalization group and universality);
- quantum statistics and noninteracting quantum gases (Bose-Einstein condensation; magnetic properties of free-fermion gases);
- second quantization and quantum many-body systems (weakly interacting Bose gases; fermionic systems on a lattice);
- quantum phase transitions (solution of the 1D quantum Ising model).

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica statistica	9	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Caratterizzanti	lezioni frontali + esercitazioni	Teorico e dei fondamenti della Fisica

Fisica stellare (9 CFU)

Denominazione in Inglese: Stellar Physics

Obiettivi formativi: Analisi delle basi fisiche del funzionamento delle strutture stellari e descrizione delle caratteristiche delle stelle durante le fasi evolutive. Si interpreteranno le caratteristiche degli ammassi stellari nel quadro dell'evoluzione della Galassia

Objectivi formativi in Inglese: Analysis of the physical mechanisms at the basis of the stellar structures and description of the evolutionary characteristics of stars. The main characteristics of stellar clusters will be understood in the light of the Galactic evolution.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica stellare	_	FIS/05 ASTRONOMIA E ASTROFISICA	Caratterizzanti		Astrofisico, geofisico e spaziale

Fisica stellare A (6 CFU)

Denominazione in Inglese: Stellar Physics A

Obiettivi formativi: Analisi delle basi fisiche del funzionamento delle strutture stellari e descrizione delle caratteristiche delle stelle durante le diverse fasi evolutive.

Syllabus:

Introduzione generale sulle caratteristiche delle stelle nella Via Lattea e nel Gruppo Locale. Condizioni di equilibrio per le strutture stellari. Meccanismi fisici in gioco nelle strutture stellari: equazione di stato della materia stellare, produzione di energia nucleare, catture neutroniche, meccanismi di interazione fotone-materia, trasporto di energia (radiativo, convettivo e conduttivo), nucleosintesi stellare. Equazioni di struttura stellare. Formazione stellare ed evoluzione iniziale. Fasi di combustione di H centrale ed in shell. Il modello solare. Fasi di combustione di elio. Fasi evolutive avanzate.

Analysis of the physical mechanisms active in stars. Knowledge of the main topics related to stellar structure and evolution

tars: equation of state of the stellar matter, nuclear energy generation, neutron captures, photon-matter interactions, energy transport (radiative, convective and conductive). Stellar nucleosynthesis. Equations of stellar structure. Star formation and eyarly Evolution. The hydrogen burning phases. The solar model. The Helium burning phases. The advanced evolutionary phases.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni è consigliata.

Modalità di verifica finale: esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica stellare A	6	FIS/05 ASTRONOMIA E ASTROFISICA	Caratterizzanti	lezioni frontali + esercitazioni	Astrofisico, geofisico e spaziale

Fisica teorica 1 (9 CFU)

Denominazione in Inglese: Theoretical physics 1

Obiettivi formativi: Fornire le basi della teoria di campo quantistica, che è generalmente utilizzata per descrivere le interazioni fondamentali, ma anche sistemi quantistici della fisica dello stato condensato.

Basics of quantum field theories, which describe fundamental interactions, but also quantum systems in condensed matter. **Obiettivi formativi in Inglese:** Basics of scattering theory, field theories and conserved quantities, Dirac equation and its solutions, field quantization, CPT theorem, perturbation theory and Feynman diagrams, processes in electrodynamics, phonons.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata. Si assume una buona conoscenza dell'analisi sul piano complesso

Modalità di verifica finale: Prova d'esame scritta e orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica teorica 1	9	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Caratterizzanti	lezioni frontali + esercitazioni	Teorico e dei fondamenti della Fisica

Fisica teorica 2 (9 CFU)

Denominazione in Inglese: Theoretical physics 2

ObietiRegolamien Colsisicanzato sulle teorie di campo quantistiche e statistiche,

introdotte attraverso l'approccio funzionale del Path Integral.

Rinormalizzazione. Teorie di gauge abeliane e non abeliane. Rottura di simmetria. Meccanismo di Higgs. Teorie delle interazioni

fondamentali: Modello Standard. Rinormalizzazione alla Wilson e applicazioni ai fenomeni critici.

Advance course of quantum and statistical field theory, introduced using the functional approach based on the Path Integral Renormalization. Abelian and nonabelian gauge theories. Breaking of the symmetry, Higgs mechanism. Theory of fundamental interactions:

Standard Model. Wilson renormalization and applications to critical phenomena.

Objectivi formativi in Inglese: Generator functionals, effective action, renormalization, path integral, BRS symmetry, weak decays, dynamical symmetries of strong interactions, chiral group, sigma model, teorie di gauge non-abeliane, asymptotic freedom.

CFU: 9 Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Propedeuticità: teorica 1

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fisica teorica 2	9	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Caratterizzanti	lezioni frontali + esercitazioni	Teorico e dei fondamenti della Fisica

Fondamenti di interazione radiazione materia (9 CFU)

Denominazione in Inglese: Fundamentals of matter-radiation interaction

Obiettivi formativi: Concetti base dell'interazione radiazione-materia. Probabilità di transizione. Matrice densità, larghezze spettrali, dinamica temporale. Quantizzazione del campo elettromagnetico ed emissione spontanea. Fluttuazioni nelle statistiche. Laser e maser. Risonanza magnetica. Risposta ottica lineare e non-lineare. Effetti coerenti. Micro- e nano-ottica

Basic concepts of matter-radiation interaction. Transition probabilities. Density matrix, spectral linewidths, temporal dynamics. Quantization of the electromagnetic field and spontaneous emission. Statistical fluctuations. Lasers and masers. Magnetic resonance. Linear and non-linear optical response. Coherent effects. Micro- and nano-optics.

CFU: 9 Reteirabilità: 1

Modalità di verifica finale: prova scritta+orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Fondamenti di interazione radiazione materia	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Imaging per la fisica bio-medica (9 CFU)

Denominazione in Inglese: Imaging for bio-medical physics

Obiettivi formativi: L'insegnamento costituisce una introduzione alle tecniche di acquisizione di immagini in campo biomedico, partendo dai concetti di base fino ad illustrare alcune applicazioni avanzate in ambito clinico. Gli argomenti trattati riguardano le immagini a raggi X (radiografia analogica e digitale e tomografia computerizzata), la Risonanza Magnetica Nucleare (con applicazioni di imaging e spettroscopia), la tomografia a emissione di positrone (PET). Vengono inoltre illustrati i principi di imaging ottico (fluorescenza e bioluminescenza), di imaging a luce Cherenkov (CLI) e di imaging a ultrasuoni e fotoacustico.

The course will introduce to imaging techniques in the bio-medical field, from the basic concepts to the description of some advanced clinical applications. The topics will cover X-ray images (analogic and digital radiography), computed tomography (CT), Nuclear Magnetic Resonance (with imaging and spectroscopy applications), positron emission tomography (PET). The principles of optical imaging (fluorescence and bioluminescence), Cherenkov light imaging (CLI) and ultrasound and photoacoustic imaging will be also discussed.

CFU: 9

Reteirabilità: 1

Propedeuticità: frequenza vivamente consigliata

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Denominazione CFU SSD Tipologia Caratteristica Ambito

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
imaging per la fisica bio- medica		FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	<u> </u>	lezioni frontali + esercitazioni	Attività formative affini o integrative

Informatica con laboratorio (6 CFU)

Denominazione in Inglese: Computing science with laboratory

Obiettivi formativi: Elementi della programmazione con utilizzo del linguaggio C. Introduzione sulle architetture dei calcolatori; descrizione delle principali caratteristiche del linguaggio C. Introduzione alla programmazione parallela. Algoritmi, strutture dati, complessita`

Reteirabilità: 1

Modalità di verifica finale: prova scritta e orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Informatica con laboratorio	6	FIS/01 FISICA SPERIMENTALE	Altre attività - scelta libera dello studente	lezioni frontali+laboratorio	Sperimentale applicativo

Instrumentation for fundamental interactions physics (9 CFU)

Denominazione in Inglese: Instrumentation for fundamental interactions physics

Obiettivi formativi: Il corso presenta argomenti avanzati nel campo della strumentazione per la fisica delle particelle, con particolare attenzione alle applicazioni in fisica nucleare e delle particelle, ma con esempi anche da altri campi. Gli studenti acquisiranno la conoscenza delle moderne tecnologie dei sensori e relativa elettronica, e di come possono essere organizzati in un sistema di rivelazione. Verranno anche forniti esempi di come la strumentazione avanzata è utilizzata nelle misure di fisica.

The course presents advanced topics in instrumentation fundamental physics, with particular focus on application in nuclear and particle physics, but with examples also from other fields.

The students will acquire knowledge of modern sensor technologies and related electronics and of how they can be organized in a detector system. Examples of how advanced instrumentation is used in physics measurements will also be provided.

CFU: 9

Reteirabilità: 1

Propedeuticità: Propedeuticità: nessuna. Laboratorio di Interazioni Fondamentali A consigliato

Modalità di verifica finale: Prova d'esame scritta ed orale

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Instrumentation for fundamental interactions physics	9	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	lezioni frontali + esercitazioni	Sperimentale applicativo

Note: Erogato in italiano in caso gli studenti frequentanti siano tutti italiani.

Interazioni fondamentali (9 CFU)

Denominazione in Inglese: Fundamental Interactions

Obiettivi formativi: Conoscenza di base quantitativa della fisica delle particelle elementari e delle loro interazioni, dal punto di vista fenomenologico e sperimentale. Capacità di valutare quantitativamente processi ed esperimenti. Conoscenza dello sviluppo temporale e delle principali scoperte.

Basic quantitative knowledge of the physics of elementary particles and of their interactions, from the phenomenological and experimental point of view

Ability to estimate quantitatively processes and experiments. Knowledge of the time development of the main discoveries.

CFU: 9

Reteirabilità: 1

Propedeuticità: Nessuna propedeuticità.

La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame scritta ed orale

Lingua ufficiale: Inglese

Denominazione CFU SSD	Tipologia	Caratteristica	Ambito
-----------------------	-----------	----------------	--------

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Interazioni fondamentali	9	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Note: Corso erogato in italiano in caso gli studenti frequentanti siano tutti italiani.

Introduzione alla biofisica molecolare (6 CFU)

Denominazione in Inglese: Introduction to Molecular Biophysics

Obiettivi formativi: L'insegnamento introduce a concetti di base come la struttura delle biomolecole (proteine, acidi nucleici, carboidrati, cofattori, lipidi) e le loro funzioni (proteine strutturali, enzimi, recettori, proteine di membrana; Acidi nucleici: deposito e trasferimento dell'informazione genetica; componenti della membrana cellulare).

Si illustrano inoltre i principali metodi di spettroscopia molecolare (Spettroscopia elettronica: assorbimento UV/vis, dicroismo circolare, fluorescenza e fosforescenza; Spettroscopia vibrazionale di biomolecole: IR e Raman) e di indagine strutturale (Cristallografia a raggi X, NMR e microscopia elettronica).

Una parte del corso è dedicata alla modellistica delle biomolecole: modelli atomistici, metodi quanto-meccanici (QM), meccanica molecolare e campi di forza empirici, dinamica molecolare e accelerata (replica exchange e metadinamica) fino alla predizione e disegno di strutture di proteine. Si illustrano inoltre i concetti generali alla base dei modelli a multiscala: PES/FES, variabili collettive, modelli coarse grained, a rete elastica e modelli di Go, modelli di solvente implicito, modelli di membrana implicita, altri modelli "continui".

Infine sono illustrate alcune applicazioni riguardanti: i recettori di membrana e la trasmissione degli impulsi nervosi, le interfacce bio-non bio (ad es, nanoparticelle funzionalizzate), la struttura e la fotofisica delle proteine fluorescenti.

CFU: 6

Reteirabilità: 1

Propedeuticità: nessuna propedeuticità- frequenza vivamente consigliata

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
introduzione alla biofisica molecolare	6	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Introduzione alla fisica dei neutrini (3 CFU)

Denominazione in Inglese: Introduction to neutrino physics

Obiettivi formativi: Il corso vuole essere una introduzione autoconsistente alla fisica dei neutrini

partendo dalle osservazioni sperimentali: decadimento beta e interazioni con la

materia, che hanno determinato l'esistenza dei tre tipi di neutrini.

Neutrini dal decadimento beta. Evidenza sperimentale di tre tipi di neutrini. Elicita' dei neutrini. Sezioni d'urto di interazione di neutrini: di corrente carica e neutra. Fenomenologia delle oscillazioni di neutrini con esperimenti con acceleratori, reattori nucleari e con neutrini solari e atmosferici per la determinazione dei parametri dell'oscillazione. Matrice PNMS e differenze dei quadrati delle masse dei neutrini. Misura diretta delle masse dei tre tipi di neutrini.

Neutrini da supernova e importanza dei neutrini anche in astrofisica e cosmologia.

CFU: 3 Reteirabilità: 1

Propedeuticità: frequenza consigliata **Modalità di verifica finale:** prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
"Introduction to neutrino physics"	3	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Introduzione alla teoria Bayesiana della probabilità (6 CFU)

Denominazione in Inglese: Introduction to Bayesian probability theory **Obiettivi formativi:** Obbiettivi:

- padronanza del teorema di Bayes
- principio di massima entropia
- metodi numerici rilevanti

Objectives

- mastering of Bayes theorem
- maximum entropy principle
- relevant numerical methods

Descrizione:

Il corso punta ad introdurre la teoria Bayesiana della probabilità come logica estesa. Per questo motivo, dopo una breve rivisitazione dell'algebra Booleana, il teorema di Bayes verra' ricavato a partire dal teorema di Cox. Verranno quindi introdotti i fondamenti di stima dei parametri e test di ipotesi nel contesto Bayesiano. Verra' quindi introdotto

il principio di massima entropia e verranno discusse alcune delle più note

distribuzioni di probabilità derivate da quest'ultimo. Infine, verranno introdotti alcuni concetti fondamentali di processi stocastici e studiati nel contesto del principio di massima entropia. Il corso inoltre presentera' esempi pratici di algoritmi rilevanti, markov chain monte carlo e nested sampling, per la soluzione di problemi di inferenza.

Description:

The course objective is to introduce Bayesian probability theory as extended logic. After a quick review of Boolean algebra, we derven Bayes theorem from Cox theorem. We will then introduce fundaments of parameter estimation as well as Bayesian

model selection. Further, we will introduce the maximum entropy principle and we will discuss some of the most common probability

distributions that can be derived from it.

We will introduce some fundamental concepts of stochastic processes and discuss them within the context of the maximum entropy principle. The course will also introduce practical examples of algorithms, such as markov chain monte carlo and nested sampling,

that are relevant for the solution of inference problems.

CFU: 6 Reteirabilità: 1

Modalità di verifica finale: seminario

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Introduzione alla teoria Bayesiana della probabilità	_	FIS/05 ASTRONOMIA E ASTROFISICA	Altre attività - scelta libera dello studente	Lezioni frontali + e- learning	A scelta dello studente

Laboratorio di biosistemi (15 CFU)

Denominazione in Inglese: Laboratory of biosystems

Obiettivi formativi: Metodologie sperimentali di analisi spettrale ed ottica guidata. Apparati laser. Principi alla base dei metodi litografici per biosistemi. Interazioni delle radiazioni ionizzanti con la materia. Sorgenti di radiazioni ionizzanti per applicazioni biomediche. Rivelatori di radiazione basati su materiali scintillanti. Fotorivelatori a stato solido per imaging biomedico. Tecniche di imaging ottico e microscopia.

Main topics and knowledge targeted: Experimental methods for spectral analysis and guided optics. Lasers. Lithographic processes for biosystems. Ionizing radiation interactions with matter. Sources of ionizing radiation for biomedical applications. Radiation detectors based on scintillating materials. Solid-state photodetectors for biomedical imaging. Optical imaging and microscopy techniques.

CFU: 15 Reteirabilità: 1

Propedeuticità: frequenza obbligatoria

Modalità di verifica finale: prova pratica e verifica orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Laboratorio di biosistemi - I modulo	9	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo
Laboratorio di biosistemi - Il modulo	6	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo

Laboratorio di fisica della materia e nanotecnologie (15 CFU)

Denominazione in Inglese: Materials and nanotechnologies laboratory

Obiettivi formativi: Metodologie sperimentali di analisi spettrale, interferometria, olografia ed ottica guidata. Apparati laser. Principi alla base dei metodi litografici per micro-nanofotonica. Tecniche di microscopia.

Main topics and knowledge targeted: Experimental methods for spectral analysis, interferometry, holography and guided optics. Lasers. Lithographic processes for micro-nanophotonics. Microscopy techniques.

CFU: 15

Reteirabilità: 1

Propedeuticità: frequenza obbligatoria

Modalità di verifica finale: Prova pratica e verifica orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Materials and nanotechnologies laboratory	15	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo

Laboratorio di fisica della materia e nanotecnologie S (9 CFU)

Denominazione in Inglese: Materials and nanotechnologies laboratory S

Obiettivi formativi: Argomenti ed obiettivi formativi: Metodologie sperimentali di analisi spettrale, interferometria, olografia ed ottica guidata. Apparati laser. Principi alla base dei metodi litografici per micro-nanofotonica. Tecniche di microscopia. Gli obiettivi formativi vengono ottenuti affrontando un programma specifico di esperienze laboratoriali.

Main topics and knowledge targeted: Experimental methods for spectral analysis, interferometry, holography and guided optics. Lasers. Lithographic processes for micro-nanophotonics. Microscopy techniques. The learning objectives will be achieved by specific, hands-on lab experiments.

CFU: 9

Reteirabilità: 1

Propedeuticità: Frequenza obbligatoria

Modalità di verifica finale: PROVA DI LABORATORIO E VERIFICA ORALE

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
LABORATORIO DI fisica della materia e nanotecnologie	9	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo

Laboratorio di fisica medica (12 CFU)

Denominazione in Inglese: Medical physics laboratory

Obiettivi formativi: Nel corso di laboratorio viene effettuata la caratterizzazione di scintillatori, fotorivelatori e sensori allo stato solido per la misura di campi di radiazioni ionizzanti. Saranno implementate tecniche sperimentali di imaging con sistemi diagnostici di media-alta complessita', quali TAC, SPECT, PET. Inoltre verranno effettuate simulazioni a calcolatore di codici Monte Carlo.

This Hands-on-laboratory covers, the charatherization of scintillators photodetectors adn solid state sensors for the mesurament of ionasing radiation fields. Experimental immaging techiques are implemented and make use of medium/high complexity diagnostic systems, such as, CT, SPECT and PET.Computer simulations with Monte Carlo codes are also performed.

Obiettivi formativi in Inglese: This hands-on laboratory course covers the characterization of scintillators, photodetectors and solid state sensors for the measurement of ionizing radiation fields. Experimental imaging techniques are implemented that make use of medium/high complexity diagnostic systems, such as CT, SPECT, PET and MRI. Computer simulations with Monte Carlo codes are also performed.

CFU: 12

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è obbligatoria.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Laboratorio di fisica medica - Modulo A	6	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo
Laboratorio di fisica medica - Modulo B	6	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo

Laboratorio di Fisica Medica B (15 CFU)

Denominazione in Inglese: Medical physics laboratory B

Obiettivi formativi: Nel corso di laboratorio viene effettuata la caratterizzazione di scintillatori, fotorivelatori e sensori allo stato solido per la misura di campi di radiazioni ionizzanti. Saranno implementate tecniche sperimentali di imaging con sistemi diagnostici di media-alta complessita', quali TAC, SPECT, PET. Inoltre verranno effettuate simulazioni a calcolatore di codici Monte Carlo.

This Hands-on-laboratory covers, the charatherization of scintillators photodetectors adn solid state sensors for the mesurament of ionasing radiation fields. Experimental immaging techiques are implemented and make use of medium/high

complexity diagnostic systems, such as, CT, SPECT and PET.Computer simulations with Monte Carlo codes are also performed.

Obiettivi formativi in Inglese: This hands-on laboratory course covers the characterization of scintillators, photodetectors and solid state sensors for the measurement of ionizing radiation fields. Experimental imaging techniques are implemented that make use of medium/high complexity diagnostic systems, such as CT, SPECT, PET and MRI. Computer simulations with Monte Carlo codes are also performed.

CFU: 15 Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è obbligatoria.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Laboratorio di Fisica Medica B	15	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo

Laboratorio di ottica quantistica (12 CFU)

Denominazione in Inglese: Quantum optics laboratory

Obiettivi formativi: Propagazione delle onde e.m. in mezzi omogenei. Stato di polarizzazione di un onda e.e. Legge di rifrazione e riflessione. Interferenza. Olografia. Progazione gaussiana dei fasci e.m. Fibre ottiche

Obiettivi formativi in Inglese: Electromagnetic waves propagation in homogeneous media. State of polarization of an electromagnetic wave. Law Refraction, Reflection. Interference. Holography. Gaussian propagation of e.m. beams. Fiber optics

CFU: 12 Reteirabilità: 1

Propedeuticità: La frequenza e' obbligatoria

Modalità di verifica finale: Prove di laboratorio e verifica orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Laboratorio di ottica quantistica	12	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo

Laboratorio Interazioni Fondamentali (15 CFU)

Denominazione in Inglese: Fundamental Interactions laboratory

Obiettivi formativi: Obiettivi formativi: Il corso ha lo scopo di fornire allo studente una conoscenza di base dell'interazione tra radiazione e materia, e far acquisire una pratica di laboratorio con rivelatori di particelle singole.

Obiettivi formativi in Inglese: The aim of the course is to provide the basics of matter and radiation interactions, and a practical laboratory experience with single-particle detectors.

CFU: 15 Reteirabilità: 1

Propedeuticità: La frequenza e' obbligatoria

Modalità di verifica finale: Prove di laboratorio e verifica orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
MODULO B	6	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo
MODULO A	9	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo

Laboratorio Interazioni fondamentali S (9 CFU)

Denominazione in Inglese: Fundamental Interactions laboratory S

Obiettivi formativi: Il corso ha lo scopo di fornire allo studente una conoscenza di base dell'interazione tra radiazione e materia, e far acquisire una pratica di laboratorio con rivelatori di particelle singole.

Objectivi formativi in Inglese: The aim of the course is to provide the basics of matter and radiation interactions, and a practical laboratory experience with single-particle detectors.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza e' obbligatoria

Modalità di verifica finale: Prove di laboratorio e verifica orale

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Laboratorio interazioni fondamentali S	-	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	laboratorio e/o esercitazioni	Sperimentale applicativo

Laser a Stato Solido (3 CFU)

Denominazione in Inglese: Solid State Lasers

Obiettivi formativi: Differenti classi di cristalli isolanti, sistemi di crescita.

Ioni di terre rare nei cristalli (eccitazioni dei livelli, vita media radiativa e meccanismi di trasferimento di energia) Apparati sperimentali per la misura dello spettro di luminescenza e di eccitazione emesso da un cristallo.

Laser tre e quattro livelli, parametri laser (sezione d'urto d'emissione, sezione d'urto d'assorbimento)

Laser in regime impulsato: (Q-switching e Mode Locking)

Laser ad emissione verticale (VCSEL)

Laser a stato solido in regime continuo ed impulsato nella regione di 1 micron e 2 micron

laser a stato solido in regime continuo ed impulsato nella regione dell'ultravioletto e del visibile.

Obiettivi formativi in Inglese: Different classes of insulating crystals; growth techniques. Rare earth ions in crystals:

multiplets Hamiltonian, selection rules. Crystal field interaction

Multiplets excitation and radiative average lifetime. Mechanisms of energy transfer, phonon interaction.

CFU: 3

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Laser a Stato Solido	3	FIS/03 FISICA DELLA MATERIA	Affini o integrative	+ esercitazioni	Attività formative affini o integrative

Macchine acceleratrici (9 CFU)

Denominazione in Inglese: Particles accelerators

Obiettivi formativi: Il corso presenterà i principii e i modi di funzionamento di acceleratori di elettroni e di protoni.

Obiettivi formativi in Inglese: The course will present principles and operation of accelerators of electrons and protons.

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

CFU: 9

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Macchine acceleratrici	9	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Macchine acceleratrici A (6 CFU)

Denominazione in Inglese: Particles Accelerators A

Obiettivi formativi: Il corso presenterà i principii e i modi di funzionamento di acceleratori di elettroni e di protoni

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: Prova Orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Macchine acceleratrici A	6	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Metodi algebrici della Meccanica Quantistica (6 CFU)

Denominazione in Inglese: Algebraic methods in quantum mechanics

Obiettivi formativi: Si studiano le basi matematiche della interpretazione probabilistica della meccanica quantistica, formulazione algebrica e C* algebre, simmetrie e costruzione GNS, disuguaglianze di Bell.

Objectivi formativi in Inglese: The mathematical basis of the probabilistic interpretation of quantum mechanics are studied, together with the algebraic formulation and C* algebras, symmetries and GNS construction, Bell inequalities.

CFU: 6 Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Metodi algebrici della Meccanica Quantistica		FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative	+ esercitazioni	Attività formative affini o integrative

Metodi montecarlo nella fisica sperimentale (6 CFU)

Denominazione in Inglese: Montecarlo methods in experimental physics

Obiettivi formativi: Fornire conoscenza sulle metodologie statistiche avanzate per la simulazione montecarlo impiegate sia nella progettazione che nella comprensione delle risposte di complessi apparati sperimentali.

Objectivi formativi in Inglese: Provide advanced knowledge of statistical methods for Monte Carlo simulation used in the planning and in understanding the responses of complex experimental apparatuses.

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata

Modalità di verifica finale: Prova d'esame orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Metodi montecarlo nella fisica sperimentale	6	FIS/01 FISICA SPERIMENTALE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Metodi numerici della Fisica Teorica (9 CFU)

Denominazione in Inglese: Numerical methods in theoretical Physics **Obiettivi formativi:** Il corso propone una introduzione ad alcune tecniche

di indagine numerica comuni sia alla meccanica statistica sia alla teoria quantistica dei campi nella formulazione

del path-integral, basate sul calcolo della funzione di partizione mediante metodi Monte-Carlo.

Obiettivi formativi in Inglese: Numerical analisis, approximations and errors, numerical integration, Gauss-Legendre algorithm, applications, numerical solutions of ordinary differential and Schroedinger equations, Numerov algorithm. CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata. **Modalità di verifica finale:** Prova orale con eventuale discussione di un progetto

specifico su una delle tematiche del corso.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Metodi numerici della Fisica Teorica	9	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	A scelta dello studente

Metodi numerici per la Fisica (9 CFU)

Denominazione in Inglese: Numerical methods in Physics

Obiettivi formativi: Il corso e` organizzato in forma modulare, con laboratorio numerico, e propone una introduzione a tecniche di indagine numerica rilevanti per vari ambiti della fisica, quali meccanica statistica, teoria quantistica dei campi, stato condensato, materiali soffici. Verranno proposti diversi moduli, ognuno dei quali affrontera` una particolare tecnica numerica attualmente in utilizzo nella ricerca in fisica e le sue applicazioni piu` rilevanti.

Nella parte introduttiva verranno ricapitolati alcuni argomenti di analisi numerica di base, necessari per poter proficuamente affrontare i moduli specifici.

Lo studente dovra` scegliere 3 fra 8 diversi moduli proposti, ciascuno equivalente a 3 CFU, e raggiungere in ciascuno di questi le competenze necessarie per portare avanti in modo autonomo un progettino numerico sulle

tematiche relative al modulo

CFU: 9

Reteirabilità: 1

Modalità di verifica finale: La valutazione sara` basata sullo svolgimento dei mini-progetti relativi a ciascuno dei moduli

scelti

e sulla discussione dei risultati ottenuti.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Metodi numerici per la Fisica	9	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	lezioni frontali+laboratorio	Sperimentale applicativo

Metodi numerici per la Fisica S (6 CFU)

Denominazione in Inglese: Numerical methods in Physics S

Obiettivi formativi: Il corso e` organizzato in forma modulare, con laboratorio numerico, e propone una introduzione a tecniche di indagine numerica rilevanti per vari ambiti della fisica, quali meccanica statistica, teoria quantistica dei campi, stato condensato, materiali soffici. Verranno proposti diversi moduli, ognuno dei quali affrontera` una particolare tecnica numerica attualmente in utilizzo nella ricerca in fisica e le sue applicazioni piu` rilevanti.

Nella parte introduttiva verranno ricapitolati alcuni argomenti di analisi numerica di base, necessari per poter proficuamente affrontare i moduli specifici.

Lo studente dovra` scegliere 2 fra 8 diversi moduli proposti, ciascuno equivalente a 3 CFU, e raggiungere in ciascuno di questi le competenze necessarie per portare avanti in modo autonomo un progettino numerico sulle tematiche relative al modulo.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: La valutazione sara` basata sullo svolgimento dei mini-progetti relativi a ciascuno dei moduli scelti

e sulla discussione dei risultati ottenuti.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Metodi numerici per la Fisica S	6	FIS/01 FISICA SPERIMENTALE		laboratorio e/o esercitazioni	Sperimentale applicativo

Metodologie sperimentali per la fisica delle astroparticelle (9 CFU)

Denominazione in Inglese: Experimental methods for astroparticle physics

Obiettivi formativi: Il corso presenta la strumentazione e le tecniche sperimentali per l'osservazione di sorgenti astrofisiche nel dominio delle alte energie. Le diverse strumentazioni sono discusse partendo dagli ordini di grandezza delle quantita' da misurare (flussi, spettri...). I rivelatori di fotoni e di particelle sono trattati come i blocchi fondamentali prima di discutere le loro integrazione in strumentazione complessa per esperimenti a Terra e dallo spazio. La strumentazione e le tecniche per la fisica delle astroparticelle sono trattati discutendo le diverse regioni come aree di ricerca: astrofisica X, astrofisica gamma, astrofisica con raggi cosmici, astrofisica con neutrini, astrofisica gravitazionale, ricerca di materia oscura. Le conoscenze acquisite forniranno agli studenti interessati ad una tesi nel campo delle astroparticelle la conoscenza della strumentazione e delle tecniche di osservazione di sorgenti astrofisiche ad alta energia per lavorare alla strumentazione, pianificare ed eseguire le osservazioni. Il corso comprende una parte dedicata al follow-up delle controparti eletromagnetiche di eventi ad alta energia.

Una parte del corso e' dedicata agli archivi pubblici di dati di esperimenti di alte energie e ai metodi di analisi dei dati, con esercitazioni in classe su dati (open data) di astrofisica X, astrofisica gamma, di inteferometri gravitazionali.

CFU: 9

Reteirabilità: 1

Modalità di verifica finale: ESAME ORALE

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Metodologie sperimentali per la fisica delle astroparticelle	9	FIS/01 FISICA SPERIMENTALE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Metodologie sperimentali per la fisica delle astroparticelle A (6 CFU)

Denominazione in Inglese: Experimental methods for astroparticle physics A

Obiettivi formativi: Il corso presenta la strumentazione e le tecniche sperimentali per l'osservazione di sorgenti astrofisiche nel dominio delle alte energie. Le diverse strumentazioni sono discusse partendo dagli ordini di grandezza delle quantita' da misurare (flussi, spettri...). I rivelatori di fotoni e di particelle sono trattati come i blocchi fondamentali prima di discutere le loro integrazione in strumentazione complessa per esperimenti a Terra e dallo spazio. La strumentazione e le tecniche per la fisica delle astroparticelle sono trattati discutendo le diverse regioni come aree di ricerca: astrofisica X, astrofisica

gamma, astrofisica con raggi cosmici, astrofisica con neutrini, astrofisica gravitazionale, ricerca di materia oscura. Le conoscenze acquisite forniranno agli studenti interessati ad una tesi nel campo delle astroparticelle la conoscenza della strumentazione e delle tecniche di osservazione di sorgenti astrofisiche ad alta energia per lavorare alla strumentazione, pianificare ed eseguire le osservazioni. Una parte del corso e' dedicata agli archivi pubblici di dati di esperimenti di alte energie e ai metodi di analisi dei dati, con esercitazioni in classe su dati (open data) di astrofisica X, astrofisica gamma, di inteferometri gravitazionali.

CFU: 6 Reteirabilità: 1

Modalità di verifica finale: ESAME ORALE

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Metodologie sperimentali per la fisica delle astroparticelle A	6	FIS/01 FISICA SPERIMENTALE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Misure fisiche nella Normativa Ambientale (3 CFU)

Denominazione in Inglese: Environmental Legislation Physical Measurements

Obiettivi formativi: Rumore e vibrazioni negli ambienti di lavoro:

D.Lgs. 81/08, Titolo VIII, Capo III e tecniche di misura: analisi di casi concreti in luoghi di lavoro - Valutazione dell'esposizione personale - Controllo del rumore alla sorgente - metodi per la riduzione dell'esposizione. Cenni al controllo attivo e passivo del rumore - Protettori individuali.

Vibrazioni meccaniche: Fisica elementare delle vibrazioni - Risonanza - Trasmissibilità - Effetti e controllo delle vibrazioni dei macchinari nelle costruzioni e sull'uomo - Misure di vibrazioni - Leggi e norme tecniche. Controllo delle vibrazioni negli ambienti di lavoro.

Acustica forense:

Compiti del Consulente Tecnico di ufficio e del Consulente tecnico di parte. Procedure da seguire per l'espletamento del mandato. La collaborazione con il giudice per la definizione dei quesiti. La relazione tecnica e la risposta al quesito. Il tentativo di conciliazione

Esercitazioni pratiche sull'uso dei software per la progettazione dei requisiti acustici degli edifici:

Utilizzo dei software per la progettazione dei requisiti acustici degli edifici. Case studies in ambienti civili e di edilizia

Esercitazioni pratiche sull'uso dei software per la propagazione sonora:

Utilizzo dei software per la propagazione sonora in ambiente esterno. Predisposizione dei dati in ingresso al modello. Utilizzo dei programmi GIS. Applicazione dei modelli ad interim e del modello CNOSSOS. Case studies su infrastrutture lineari (ferrovie e strade) e sorgenti industriali.

Obiettivi formativi in Inglese: The course aims to provide a deeper insight into environmental acoustics issues, technical norms and legislation in force

CFU: 3

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Modul

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Misure fisiche nella Normativa Ambientale	3	FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	J		Attività formative affini o integrative

Modellizzazione dei Sistemi Complessi (6 CFU)

Denominazione in Inglese: Complex systems models

Obiettivi formativi: Il corso è mirato a fornire gli strumenti teorici per la modellizzazione di sistemi complessi. Obiettivi formativi in Inglese: The course is aimed to provide theoretical tools for modeling biological systems.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Modellizzazione dei Sistemi Complessi	6	FIS/03 FISICA DELLA MATERIA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

ModeRestandard ପ୍ରଣୋତାନ୍ୟerazioni fondamentali (9 CFU)

Denominazione in Inglese: Standard model for particle interactions

Obiettivi formativi: Modello standard delle interazioni fondamentali, implicazioni in ambito cosmologico.

Standard model of the fundamental interactions,

Phenomenology of fundamental interactions, Connections with

cosmological issues.

Objectivi formativi in Inglese: Description of the fundamental interactions and gauge theories; Higgs phenomenon and applications at LHC, experimental discovery of supersymmetry, neutrino's oscillations, naturalness, particle physics at the cosmological level.

CFU: 9 Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Modello standard delle interazioni fondamentali		FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative	+ esercitazioni	Attività formative affini o integrative

Multimessenger Physics Laboratory (9 CFU)

Denominazione in Inglese: Multimessenger Physics Laboratory

Obiettivi formativi: At the end of the course the students will be able to:

- -know the main experimental techniques and facilities to detect the various cosmic messengers;
- -know the data format used in modern experiments in the multimessenger context;
- -access archives and open data available from multimessenger facilities;
- -perform basic data analysis in the context of high-energy astrophysics, gravitational waves, astroparticle physics;
- -develop an analysis project based on Python and on the specific tools required for the analysis.

CFU: 9

Reteirabilità: 1

Propedeuticità: si consiglia la frequenza

Prerequisites

Basic working knowledge of the Python language.

Basic concepts of statistics (statistical distributions and their properties, fitting methods, chi squared test)

The students will be able to run the projects on their laptop, without the need to install many tools by themselves. The required tools and software will be provided through a custom environment as virtual machine and a remove platform for running the analysis code will be also available.

Modalità di verifica finale: Prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Multimessenger Physics Laboratory	9	FIS/01 FISICA SPERIMENTALE	Caratterizzanti	lezioni frontali+laboratorio	Sperimentale applicativo

Note: During the course, the students will be required to carry on simple analysis projects based on real data.

Oceanografia fisica su grande scala (9 CFU)

Denominazione in Inglese: Large Scale Physical Oceanography

Obiettivi formativi: Il corso tratta argomenti rilevanti per lo studio della dinamica dei

fenomeni oceanici, privilegiando le tematiche di carattere generale piuttosto che le questioni specifiche della circolazione locale. Sarà

perciò introdotto il concetto di sistema complesso e le grandezze

oceanografiche saranno considerate come caratteristiche emergenti, a larga scala, di specifici sistemi complessi (caotici e/o turbolenti).

Dopo l'introduzione dei concetti generali sarà affrontato in particolare

lo studio di alcuni importanti fenomeni oceanici, come le grandi

correnti termoaline (per esempio, la Corrente del Golfo), il Nino/La

Nina o la North Atlantic Oscillation.

CFU: 9 Reteirabilità: 1

Propedeuticità: nessuna, ma è consigliato aver seguito il corso di

Sistemi Complessi.

Modalità di verifica finale: prova orale su progetto individuale

Lingua ufficiale: Italiano

Denominazione CFU SSD	Tipologia	Caratteristica	Ambito
-----------------------	-----------	----------------	--------

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Oceanografia fisica su grande scala	9	FIS/03 FISICA DELLA MATERIA	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Ottica atomica (9 CFU)

Denominazione in Inglese: Atomic Optics

Obiettivi formativi: Interazione della luce con un sistema quantistico. Raffreddamento laser. Le interazioni a due corpi tra atomi ultra-freddi e il loro controllo. Interferometria atomica e correlazioni quantistiche. Condensati di Bose-Einstein e laser atomici. I gas quantistici degeneri come sistemi semplici per studiare la fisica a molti corpi.

Interactions between light and quantum systems. Laser cooling. Two-body interactions between ultra-cold atoms and their control. Atomic interferometry and quantum correlations. Bose-Einstein condensates and atom lasers. The degenerate quantum gases as simple systems to study the many-body physics.

CFU: 9

Reteirabilità: 1

Propedeuticità: fortemente consigliata **Modalità di verifica finale:** prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
ottica atomica	9	FIS/03 FISICA DELLA MATERIA	Affini o integrative	+ esercitazioni	Attività formative affini o integrative

Ottica quantistica e plasmi (9 CFU)

Denominazione in Inglese: Quantum Optics and Plasma Physics

Obiettivi formativi: Competenze in Ottica Fisica, Ottica Quantistica, Applicazioni dei LASERs, Accelerazione LASER-

Plasma di particelle e sorgenti secondarie di radiazione X e gamma

Objectivi formativi in Inglese: Electromagnetic radiation and quantum physics. Thermal and coherent radiation sources. Spatial and temporal coherence. Brilliance of a source and intensity of radiation. Nonlinear Optics: harmonic generation. Parametric amplifier. Self-focusing of laser beams.

CFU: 9

Reteirabilità: 1

Propedeuticità: Tutti gli esami del triennio. La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Ottica quantistica e plasmi	9	FIS/03 FISICA DELLA MATERIA	Affini o integrative	+ esercitazioni	Attività formative affini o integrative

Note: Il corso è caratterizzante per il solo curriculum di Fisica della Materia

Plasmi A (6 CFU)

Denominazione in Inglese: Plasma Physics A

Obiettivi formativi: Definizione di plasma. Comportamento collettivo. Dal sistema a N corpi alla teoria di campo medio. Ruolo delle collisioni. Modello fluido e variabili macroscopiche. Equilibrio, stabilità, onde. Plasmi spaziali. Cenni di fusione magnetica e inerziale.

Obiettivi formativi in Inglese: Definition of a plasma. Collective behavior. From a N body system to mean field theory. The role of collisions. Fluid model and macroscopic variables. Equilibrium, stability, waves. Space plasmas. Outlines of magnetic and inertial fusion

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Inglese

Denominazione CFU SSD	Tipologia	Caratteristica	Ambito	
-----------------------	-----------	----------------	--------	--

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Plasmi A	6	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Note:Qualora venga approvato il "Joint Master Courses/Joint Doctorate Programme" il corso sarà tenuto esclusivamente in lingua inglese. In alternativa il corso potrà essere tenuto in lingua italiana su motivata richiesta degli studenti frequentanti.

Plasmi a bassa temperatura (3 CFU)

Denominazione in Inglese: Low temperature plasmas

Obiettivi formativi: Plasmi "freddi" da scariche in natura e tecnologia: importanza storica, parametri tipici e leggi caratteristiche. Regimi e dispositivi per applicazioni industriali: trattamenti superficiali, microincisione, nanofabbricazione, pirolisi.

Objectivi formativi in Inglese: "Cold" discharge plasmas in nature and technology: historical relevance, typical parameters and characteristic laws. Regimes and devices for industrial applications: surface processing, etching, nanofabrication, pyrolisis.

CFÚ: 3 Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Plasmi a bassa temperatura	3	FIS/03 FISICA DELLA MATERIA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Plasmi Teoria Cinetica (6 CFU)

Denominazione in Inglese: Plasma Physics kinetic theory

Obiettivi formativi: Equazione di Vlasov. Soluzioni stazionarie. Onde in teoria Vlasov. Smorzamento di Landau. Intrappolamento di particelle. Instabilità risonanti. L'eq. di Vlasov in plasmi magnetizzati. Verso la MHD: onde di Alfvén. L'equazione di Ohm generalizzata. Onde di plasma di grande ampiezza. Trasporto anomalo nei plasmi di fusione.

Vlasov Eq, Stationary solutions, Waves in Vlasov theory. Landau damping, Particle trapping. Vlasov eq. in magnetized plasmas. Towards MHD Alfven waves, Generalized Ohm's law. Large amplitude waves in plasmas. Anomalous transport in fusion plasmas.

Obiettivi formativi in Inglese: Vlasov Eq, Stationary solutions, Waves in Vlasov theory. Landau damping, Particle trapping. Vlasov eq. in magnetized plasmas. Towards MHD Alfven waves, Generalized Ohm's law.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame: orale.

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Plasmi teoria cinetica	6	FIS/03 FISICA DELLA MATERIA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Processi astrofisici (9 CFU)

Denominazione in Inglese: Astrophysical processes

Obiettivi formativi: La fisica dell'astrofisica e le base di ossevazioni. Equilibrio statistico, processi radiativi (atomi, molecoli, processi continui termici e non), trasporto radiativo e formazione degli spettri. Idrodinamica: equazioni di moto, vorticita`, viscosita`, autosimilarita`, instabilita`, turbolenza. Applicazioni in astrofisica, e.g. venti, supernovae/novae, regioni H II, convezione, dischi d'accrescimento.

Obiettivi formativi in Inglese: The "physics of astrophysical observations". Radiative processes, in general, including spectral line formation in static and moving media and radiative transfer. Fundamentals of hydrodynamics relevant to cosmic environments: self-similarity, viscous and vortical extensions of the equations of motion, fundmental fluid instabilities and dimensionless numbers, turbulence; application to particular astrophysical problems (e.g. interstellar medium, explosive phenomena, winds and outflows, accretion disks)

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Processi astrofisici	9	FIS/05 ASTRONOMIA E ASTROFISICA	Caratterizzanti	lezioni frontali + esercitazioni	Astrofisico, geofisico e spaziale

Note: Qualora venga approvato il "Joint Master Courses/Joint Doctorate Programme" il corso sarà tenuto esclusivamente in lingua inglese. In alternativa il corso potrà essere tenuto in lingua italiana su motivata richiesta degli studenti frequentanti.

Prova finale (45 CFU)

Denominazione in Inglese: Thesis

CFU: 45 Reteirabilità: 1

Modalità di verifica finale: Preparazione di un elaborato scritto e presentazione orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Prova finale	44	PROFIN_S Prova finale per settore senza discipline	Altre attività - prova finale	prova finale	Per la prova finale
Altre conoscenze utili per l'inserimento nel mondo del lavoro	1	NN No settore	Altre attività - Altre conoscenze utili per l'inserimento nel mondo del lavoro	prova finale	Altre Conoscenze Utili per l'Inserimento Nel Mondo del Lavoro

Note:L'elaborato puo' essere scritto in lingua italiana o in lingua inglese.

Quantum computing and technologies (9 CFU)

Denominazione in Inglese: Quantum computing and technologies

Obiettivi formativi: Computazione quantistica: basi della computazione quantistica, della manipolazione dei qubit e dei principali algoritmi (Deutsch, Grover, Shor); programmazione quantistica usando il linguaggio Microsoft e IBM Simulazione quantistica: concetti di base, realizzazione fisica su diverse piattaforme

Comunicazione quantistica: principali protocolli di quantum key exchange; analisi di sicurezza dei protocolli Metrologia quantistica: principi di base, implementazione con NV centres e atomi freddi

Obiettivi formativi in Inglese: Quantum circuits. EPR entangled states. Bell inequality. Classical Turing machines and physical implementation of quantum computers: optical photons, ion traps, entangled photons, nuclear magnetic resonance Analysis of Bell states. Dense coding. Notions of Quantum Teleportation and Cryptography. **CFU:** 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.Breve seminario su un articolo scientifico da concordare (circa 20 minuti); interrogazione sugli argomenti del corso

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Quantum computing and technologies	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Quantum fields and topology (6 CFU)

Denominazione in Inglese: Quantum fields and topology

Obiettivi formativi: Descrivere le applicazioni dei metodi della teoria dei campi quantizzati nel calcolo di invarianti topologici associati ai nodi ed alle varietà tridimensionali. Apprendere alcune nozioni basilari di topologia e della teoria degli invarianti polinomiali associati ai nodi. Gli argomenti discussi comprendono: teorie di gauge topologiche, operatori di linea di Wilson, relazioni di skein, calcolo perturbativo, operatori composti.

CFU: 6

Reteirabilità: 1

Propedeuticità: frequenza fortemente consigliata

Modalità di verifica finale: prova orale

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Quantum fields and topology		FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Quantum Liquids (9 CFU)

Denominazione in Inglese: Quantum Liquids

Obiettivi formativi: Al termine dell'insegnamento, la/lo studente avrà sviluppato conoscenze concettuali, procedurali e fattuali nella fisica dei liquidi quantistici. In particolare, avrà imparato a:

(a) Conoscere il funzionamento di una "cassetta degli attrezzi" per concepire e realizzare in modo altamente controllato e accurato condizioni di forte correlazione nelle proprietà di carica/densità e/o di spin in liquidi quantistici, agendo su temperatura, dimensionalità, forza e range di interazione, introduzione di campi di gauge artificiali e dimensioni sintetiche; (b) Conoscere metodi teorici avanzati per predire e caratterizzare lo stato fondamentale e le eccitazioni di liquidi quantistici all'equilibrio e fuori equilibrio, metterli in relazione tra loro, e classificarli in base alla loro funzionalità per specifiche tipologie di problemi. Tra i metodi teorici sviluppati sono la teoria della risposta lineare, della misura e delle funzioni di correlazione, la fluidodinamica e l'idrodinamica quantistica, la teoria del funzionale di densità statico e dipendente dal tempo, la teoria delle funzioni di Green e loro approssimazioni autoconsistenti, la bosonizzazione in una dimensione, elementi introduttivi sui metodi per trattare sistemi quantistici aperti driven-dissipative, elementi conoscitivi per mettere in relazione questi metodi teorici con metodi di simulazione come Quantum Monte Carlo e Density-Matrix Renormalization Group, oggetto principale del corso di Laboratorio di Metodi Numerici.

(c) Conoscere la fenomenologia dei liquidi quantistici nelle principali piattaforme sperimentali in cui vengono correntemente ingegnerizzati e utilizzati: quantum gases, circuiti a superconduttore, light fluids in cavità ottiche, sistemi a semiconduttore 2D. Cogliere l'utilità di queste piattaforme per lo studio di problemi di fisica della materia e di fisica fondamentale.

Obiettivi formativi

Al termine dell'insegnamento lo studente avrà appreso a

- (a) Riconoscere nella complessità di comportamento fisico dei liquidi quantistici la semplicità delle proprietà macroscopiche, governate da leggi di conservazione e rotture di simmetria accompagnate da elasticità, modi dinamici a bassa frequenza e difetti
- (b) Organizzare e mettere in relazione questa conoscenza disciplinare in una stessa mappa concettuale con termodinamica, meccanica statistica e transizioni di fase, meccanica quantistica, teorie di campo, e struttura della materia nelle sue diverse realizzazioni
- (c) Connettere la comprensione concettuale e la formalizzazione del problema con la fenomenologia e i fatti sperimentali disponibili, e avere un'idea delle applicazioni; interpretare la fenomenologia in termini di pochi concetti e idee essenziali, e inferirne il funzionamento
- (d) Formalizzare i concetti e saperli trattare attraverso l'uso di uno o più tra i metodi sviluppati nel corso e relative procedure

CFU: 9

Reteirabilità: 1

Propedeuticità: frequenza consigliata

Modalità di verifica finale: La verifica consiste in una dissertazione orale individuale e - solo per studenti che abbiano interesse - un lavoro di gruppo. L'argomento del lavoro sarà scelto dallo/a studente secondo i propri interesse, con la supervisione della docente, tra problemi non discussi nel corso e che usino concetti e metodi appresi.

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Quantum Liquids	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	+ esercitazioni	Microfisico e della struttura della materia

Note:Se non ci sono studenti stranieri il corso può essere tenuto in Italiano

Quantum liquids S (6 CFU)

Denominazione in Inglese: Quantum liquids S **Obiettivi formativi:** Obiettivi di apprendimento

Al termine dell'insegnamento, la/lo studente avrà sviluppato conoscenze concettuali, procedurali e fattuali nella fisica dei liquidi quantistici. In particolare, avrà imparato a:

(a) Conoscere il funzionamento di una "cassetta degli attrezzi" per concepire e realizzare in modo altamente controllato e accurato condizioni di forte correlazione nelle proprietà di carica/densità e/o di spin in liquidi quantistici, agendo su temperatura, dimensionalità, forza e range di interazione, introduzione di campi di gauge artificiali e dimensioni sintetiche; (b) Conoscere le basi di selezionati metodi teorici per predire e caratterizzare lo stato fondamentale e le eccitazioni di liquidi quantistici, metterli in relazione tra loro, e classificarli in base alla loro funzionalità per specifiche tipologie di problemi. Tra i metodi teorici sviluppati sono la teoria della risposta lineare, della misura e delle funzioni di correlazione, la fluidodinamica

quantistica, concetti elementari della teoria del funzionale di densità e della teoria delle funzioni di Green, ed elementi conoscitivi per mettere in relazione questi metodi teorici con selezionati metodi di simulazione.

(c) Conoscere la fenomenologia dei liquidi quantistici nelle principali piattaforme sperimentali in cui vengono correntemente ingegnerizzati e utilizzati;

Obiettivi formativi

Al termine dell'insegnamento lo studente avrà appreso a

- (a) Riconoscere nella complessità di comportamento fisico dei liquidi quantistici la semplicità delle proprietà macroscopiche governate da leggi di conservazione e rotture di simmetria accompagnate da elasticità, modi dinamici a bassa frequenza e difetti
- (b) Organizzare e mettere in relazione questa conoscenza disciplinare in una stessa mappa concettuale con termodinamica, meccanica statistica e transizioni di fase, meccanica quantistica, teorie di campo, e struttura della materia nelle sue diverse realizzazioni
- (c) Connettere la comprensione concettuale e la formalizzazione del problema con la fenomenologia e i fatti sperimentali disponibili, e avere un'idea delle applicazioni; interpretare la fenomenologia in termini di pochi concetti e idee essenziali, e inferirne il funzionamento
- (d) Formalizzare i concetti ad un livello di base e saperli trattare attraverso l'uso di uno o più tra i metodi sviluppati nel corso e relative procedure
- (e) Valutare in modo critico articoli di ricerca specialistici sugli argomenti oggetto del corso
- (f) Ideare spiegazioni sul funzionamento di fenomeni di liquidi quantistici nelle diverse piattaforme sperimentali

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: prova orale

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Quantum Liquids S	6	FIS/03 FISICA DELLA MATERIA	Altre attività - scelta libera dello studente	+ esercitazioni	Microfisico e della struttura della materia

Note:se non ci sono studenti straniere il corso sarà tenuto in italiano

Reazioni nucleari di interesse astrofisico (9 CFU)

Denominazione in Inglese: Nuclear reactions of astrophysical relevance

Obiettivi formativi: Elementi di teoria della diffusione, sezione d'urto, fattore astrofisico e picco di Gamow. Metodi moderni per lo studio dei sistemi nucleari a pochi corpi: metodo di Faddeev e metodi variazionali. Studio dettagliato delle principali reazioni nucleari della catena pp e della teoria della nucleosintesi primordiale.

Objectivi formativi in Inglese: Selected topics of scattering theory, cross section, astrophysical factor and Gamow peak. Modern methods for the study of few-nucleon systems: Faddeev method and variational methods. Detailed study of the most important nuclear reactions present in the pp chain and in the theory of Bib Bang Nucleosynthesis.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Reazioni nucleari di interesse astrofisico	9	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Reazioni nucleari di interesse astrofisico S (6 CFU)

Denominazione in Inglese: Nuclear reactions of astrophysical relevance S

Obiettivi formativi: Elementi di teoria della diffusione, sezione d'urto, fattore astrofisico e picco di Gamow. Metodi moderni per lo studio dei sistemi nucleari a pochi corpi: metodo di Faddeev e metodi variazionali. Studio dettagliato delle principali reazioni nucleari della catena pp e della teoria della nucleosintesi primordiale.

CFU: 6 Reteirabilità: 1

Propedeuticità: frequenza fortemente consigliata

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
---------------	-----	-----	-----------	----------------	--------

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Reazioni nucleari di interesse astrofisico S	6	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Recent Highlights in Fundamental Interactions (3 CFU)

Denominazione in Inglese: Recent Highlights in Fundamental Interactions

Obiettivi formativi: Corso monografico per presentare e discutere i più recenti risultati in un settore - variabile di anno in anno - delle interazioni fondamentali. Il corso inizierà con lezioni introduttive, seguite da seminari, letture di articoli, sessioni di discussione con particolare riferimento alle prospettive future.

A monographic course with the goal to present and discuss the most recent experimental results in a selected topic - expected to change every year - in fundamental interactions. The course will start with classroom lectures to introduce the subject, then a series of seminars, reading of papers, discussion sessions, outlooks.

CFU: 3

Reteirabilità: 1

Propedeuticità: propedeuticità: Fundamental Interactions / Interazioni Fondamentali

Modalità di verifica finale: Esame orale

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Recent Highlights in Fundamental Interactions	3	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Note: In italiano se la classe è composta da soli studenti italiani

Relatività generale (9 CFU)

Denominazione in Inglese: General relativity

Obiettivi formativi: Descrizione geometrica dello spazio e del tempo

in presenza di gravi fornita dalla teoria della relativita` generale, e le sue applicazioni, come i buchi neri, radiazione gravitazionale, e la cosmologia del big bang. Aspetti sperimentali per lo studio dei fenomeni gravitazionali.

Geometric description of the the space-time in the

presence of matter, as provided by the theory of General Relativity,

and some of its physical applications, such as black holes

gravitational waves, and Big Bang cosmology. Experimental aspects of

the study of gravitazional phenomena.

Obiettivi formativi in Inglese: The theory of general relativity is presented, together with the basis of the differential geometry, Einstein equations, Schwarzschild metric, gravitational waves, cosmological models.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Relativita' generale	9	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Caratterizzanti	lezioni frontali + esercitazioni	Teorico e dei fondamenti della Fisica

Reologia (6 CFU)

Denominazione in Inglese: Rheology

Obiettivi formativi: Fluidi complessi, solidi e liquidi classici. Proprietà e misure reologiche. Cinematica e sforzi, tensore degli sforzi. Reologia dei polimeri. Reologia di altri fluidi complessi. Il tensore delle deformazioni. Cenni a teorie reologiche avanzate. Principi generali per la formulazione di teorie reologiche.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Reologia	6	FIS/03 FISICA DELLA MATERIA	Affini o integrative	+ esercitazioni	Attività formative affini o integrative

Note: Il corso si terrà in lingua inglese o italiano a seconda della platea.

Risonanza Magnetica Nucleare (6 CFU)

Denominazione in Inglese: Nuclear Magnetic Resonance

Obiettivi formativi: Il corso fornisce le conoscenze di base della RMN trattata in forma classica e quantistica. Vengono discussi i prinicipi e le tecniche della tomografia 3D con risonanza magnetica per l'imaging "in-vivo", la spettroscopia e l'imaging funzionale.

Objectivi formativi in Inglese: The course provides the basic knowledge of NMR both with a classical and a quantum approach. The fundamentals and the techniques of 3D tomography with magnetic resonance for "in-vivo" imaging, spectroscopy and functional MRI will be discussed.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Risonanza Magnetica Nucleare	6	FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	, and the second	+	Attività formative affini o integrative

Simmetrie Discrete (6 CFU)

Denominazione in Inglese: Discrete Symmetries

Obiettivi formativi: Il corso si propone di discutere le simmetrie discrete nella fisica delle particelle elementari. Vengono esaminati i piu' importanti esperimenti relativi alla violazione delle simmetrie P, C, T, CP, CPT e quelli sulla conservazione del numero leptonico e di quello barionico. Le violazioni di P, C, T, CP sono inquadrate nell'ambito della teoria elettrodebole, di cui vengono discussi gli aspetti fenomenologici.

The lectures are aimed to the study of the discrete symmetries in the elementary particle physics. The most important experiments related to the violation of the P, C, T, CP symmetries, as well those searching for the violation of the leptonic and the barionic number, are discussed. In particular the violations of P, C, T, CP are presented with a discussion of the related phenomenological aspects within the electroweak theory.

CFU: 6 Reteirabilità: 1

Propedeuticità: Interazioni Fondamentali, Fisica Teorica 1

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Simmetrie Discrete	6	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Sistemi complessi (9 CFU)

Denominazione in Inglese: Complex Systems

Obiettivi formativi: Il corso tratta argomenti rilevanti per lo studio dei sistemi complessi. In particolare, partendo da processi stocastici e nonlineari, con relativo formalismo (ad esempio, equazioni differenziali stocastiche), si arrivera` fino al trattamento del caos in sistemi conservativi e dissipativi. Verranno sottolineati gli aspetti e applicazioni interdisciplinari, con particolare enfasi alla termodinamica fuori equilibrio.

The course deals with topics relevant for the study of complex systems. In particular, starting from stochastic and nonlinear processes, with relative formalism (for example, stochastic differential equations), we will arrive to the treatment of chaos in conservative and dissipative systems. The interdisciplinary aspects and applications will be underlined, with particular emphasis on non equilibrium thermodynamics.

CFU: 9

Reteirahilità:

Modalità di verifica finale: prova orale su progetto individuale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Sistemi complessi	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali	Microfisico e della struttura della materia

Note: Il corso puo' essere tenuto in inglese a richiesta

Sistemi Complessi - Dinamiche Neurali (9 CFU)

Denominazione in Inglese: Complex Systems - Neural dynamics

Obiettivi formativi: Il corso fornisce alcuni metodi matematici utilizzati per lo studio dei sistemi neurali.

The course provides some mathematical methods for the study of neural systems.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Sistemi Complessi - Dinamiche Neurali	9	FIS/03 FISICA DELLA MATERIA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Sistemi disordinati fuori equilibrio (9 CFU)

Denominazione in Inglese: Disordered and off-equilibrium systems

Obiettivi formativi: Il Corso intende fornire conoscenze di base in:

- Descrizione ed interpretazione del disordine in liquidi, colloidi, vetri e polimeri.
- Dinamica e termodinamica degli stati di fuori equilibrio nella materia passiva e attiva.
- Tecniche sperimentali di uso corrente nello studio di struttura e dinamica di sistemi disordinati.

Learning outcomes:

By the end of the course, students will have acquired a basic knowledge in the following areas:

- Description and interpretation of disorder in liquids, colloids, glasses and polymers,
- Dynamics and thermodynamics of the off-equilibrium systems in passive and active matter,
- Experimental techniques currently used in studies concerning structure and dynamics of disordered systems.

CFU: 9

Reteirabilità: 1

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Sistemi disordinati fuori equilibrio	9	FIS/03 FISICA DELLA MATERIA	Caratterizzanti	lezioni frontali + esercitazioni	Microfisico e della struttura della materia

Sistemi planetari (6 CFU)

Denominazione in Inglese: Exoplanets

Objectivi formativi: 1. Dynamics of planetary systems: few body problems, tidal interactions, resonance and chaos, effects of binarity, effects of stars in a cluster environment (fly-by effects).

- 2. Planetary interiors: geophysics of Jovian and Terrestrial planets, plate tectonics and subsolidus convection, magnetic field generation, phase and chemical stratification; Kuiper Belt objects, icy bodies, and planetinos.
- 3. Planetary atmospheres and radiative transfer, stability of climate, feedback mechanisms.
- 4. Sun-planet connections: stellar winds, magnetospheres.
- 5. Stellar and planetary system formation: stability of pre-solar accretion disks, T Tau stars and protostars, UX Ori stars, devis disks and their evolution, asteroids and planetesimals.
- 6. Exoplanetary searches: transits, proper motion, radial velocities, high contrast direct imaging.

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: Oral, seminar in class.

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Sistemi planetari	-	FIS/05 ASTRONOMIA E ASTROFISICA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Sistemi planetari S (3 CFU)

Denominazione in Inglese: Exoplanets S

Obiettivi formativi: 1. Sun-planet connections: stellar winds, magnetospheres.

- 2. Stellar and planetary system formation: stability of pre-solar accretion disks, T Tau stars and protostars, UX Ori stars, devis disks and their evolution, asteroids and planetesimals.
- 3. Exoplanetary searches: transits, proper motion, radial velocities, high contrast direct imaging.

CFU: 3

Reteirabilità: 1

Modalità di verifica finale: oral, seminar in class

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Sistemi planetari S	3	FIS/05 ASTRONOMIA E ASTROFISICA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Solitoni topologici e aspetti non perturbativi delle teorie di gauge (6 CFU)

Denominazione in Inglese: Topological solitons and nonperturbative aspects of gauge theories

Obiettivi formativi: Aspetti fondamentali dei solitoni topologici di varie codimensioni in teorie di gauge di interesse fisiche, che hanno vaste applicazioni

in diversi campi di fisica. Esempi sono il monopolo di Dirac, il monopolo di 't Hooft-Polyakov, gli istantoni in teorie di Yang-Mills, e i vortici in teorie di Higgs Abeliani e teorie di gauge non-Abeliane.

Elementi base di gruppi di omotopia e geometrie algebriche sara' esposto. Dopo una breve introduzione alla supersimmetria, la soluzione di Seiberg-Witten in teorie di gauge con N=2 supersimmetrie sara' discussa, con cenni allo sviluppo teorico piu' recente.

Fundamental aspects of topological solitons in four dimensional gauge theories of physical interest will be introduced. The have vast number of applications in diverse fields of physics. Examples are the Dirac and 't Hooft-Polyakov monopoles, instantons in Yang-Mills theories, and vortices in Abelian Higgs model and in nonAbelian gauge theories. Basic notion of homotopy groups and algebraic geometry will be given. After a brief introduction to supersymmetry, the Seiberg-Witten solutions of N=2 supersymmetric gauge theories will be discussed, with some emphasis on the most recent theoretical developments in the related field.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza a lezioni ed esrcitazioni è fortemente consigliata

Modalità di verifica finale: Prova orale

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Solitoni topologici e aspetti non perturbativi delle teorie di gauge		FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Spettroscopia e microscopia dei nanomateriali (6 CFU)

Denominazione in Inglese: Spectroscopy and microscopy of Nanomaterials

Obiettivi formativi: • Microscopia ottica confocale e oltre il limite di diffrazione (STED, PALM);

- Proprietà ottiche e confinamento quantico in nanostrutture di semiconduttori;
- Plasmonica superficiale e localizzata;
- Fondamenti di nano-fotonica, sistemi a band-gap fotonico, metamateriali;
- Microscopie e spettroscopie a scansione di sonda e a campo ottico prossimo.

CFU: 6

Reteirahilità:

Modalità di verifica finale: Esame finale orale, parte del quale può essere sostenuta basandosi su una breve presentazione su argomento concordato.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Spettroscopia e microscopia dei nanomateriali	6	FIS/03 FISICA DELLA MATERIA	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Spettroscopia ottica dei materiali (6 CFU)

Denominazione in Inglese: Optical spectroscopy of materials

Obiettivi formativi: • Descrizione dei livelli energetici vibrazionali e rotazionali delle molecole e loro regole di selezione.

- Descrizione dei livelli energetici nei solidi isolanti (centri di colore, terre rare, metalli di transizione) e semiconduttori (elettroni, fononi, eccitoni...)
- · Cenni di teoria dei gruppi applicata alla classificazione dei livelli vibrazionali delle molecole.
- Tecniche sperimentali per misure di assorbimento, emissione, vite medie, spettroscopia Raman, spettroscopia di Fourier: reticoli di diffrazione, monocromatori, interferometri, sorgenti e rivelatori

CFU: 6

Reteirabilità: 1

Modalità di verifica finale: Esame finale orale, parte del quale può essere sostenuta basandosi su una breve presentazione su argomento concordato.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Spettroscopia ottica dei materiali	6	FIS/03 FISICA DELLA MATERIA	Altre attività - scelta libera dello studente	lezioni frontali + esercitazioni	A scelta dello studente

Teoria dei gruppi (6 CFU)

Denominazione in Inglese: Group theory

Obiettivi formativi: Acquisire i concetti base e l'utilizzo della teoria dei gruppi in fisica: assiomi dei gruppi, gruppi finiti e infiniti, gruppi discreti e continui. Gruppi e algebre di Lie. Teoria delle rappresentazione. Gruppi familiari in fisica: SU(2), SU(3), SO(3), SO(4), Gruppo di Lorentz e di Poincare'. Teoria delle radici e pesi in algebre semi-semplici. Alcuni applicazioni in meccanica quantistica.

Objectivi formativi in Inglese: The fundamental principles of the group theory will be exposed, together with the mathematical aspects and the physical applications. Lie algebras and their representations will be studied. **CFU:** 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

propedeuticità Geometria ed algebra lineare; analisi matematica, fisica 1

Modalità di verifica finale: Prova d'esame scritta e orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Teoria dei gruppi	_	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative	+ esercitazioni	Attività formative affini o integrative

Teoria dei gruppi S (3 CFU)

Denominazione in Inglese: Group theory

Obiettivi formativi: Acquisire i concetti base e l'utilizzo della teoria dei gruppi in fisica: assiomi dei gruppi, gruppi finiti e infiniti, gruppi discreti e continui. Gruppi e algebre di Lie. Teoria delle rappresentazione. Gruppi familiari in fisica: SU(2), SU(3), SO(4), Gruppo di Lorentz e di Poincare'.

CFU: 3

Propedeuticità: geometria e algebra lineare, analisi matematica, fisica 1

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
---------------	-----	-----	-----------	----------------	--------

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
teoria dei gruppi s	3	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI		lezioni frontali + esercitazioni	Teorico e dei fondamenti della Fisica

Teoria delle reazioni nucleari (9 CFU)

Denominazione in Inglese: Nuclear Reaction Theory

Obiettivi formativi: La diffusione elastica e il potenziale ottico. Nucleo Composto. Fissione. Problemi energetici e reazioni nucleari. Onde distorte. Reazioni dirette. Trasferimento Breakup nucleare e Coulombiano. Accoppiamenti ed effetti di ordine superiore. Interazioni nello stato finale. Applicazioni alla fisica dei nuclei esotici. Estrazione di informazioni sulla struttura nucleare mediante l'analisi di dati sperimentali.

Obiettivi formativi in Inglese: Elastic scattering and the optical potential. Compound nucleus. Fission. Nuclear reactions vs. energy problems. Distorted waves. Direct reactions. Transfer. Nuclear and Coulomb Breakup. Couplings and higher order effects. Final state interactions. Exotic nuclei applications. Data analysis and nuclear structure information extraction.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Teoria delle reazioni nucleari	9	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Teoria delle reazioni nucleari A (6 CFU)

Denominazione in Inglese: Nuclear Reaction Theory A

Obiettivi formativi: La diffusione elastica e il potenziale ottico. Nucleo Composto. Fissione. Problemi energetici e reazioni nucleari

Onde distorte. Reazioni dirette. Trasferimento, Breakup nucleare e Coulombiano. Accoppiamenti ed effetti di ordine superiore

Interazioni nello stato finale. Applicazioni alla fisica dei nuclei esotici.

Obiettivi formativi in Inglese: Elastic scattering and the optical potential. Compound nucleus. Fission. Nuclear reactions vs. energy problems. Distorted waves. Direct reactions. Transfer. Nuclear and Coulomb Breakup. Couplings and higher order effects. Final state interactions. Exotic nuclei applications. Data analysis and nuclear structure information extraction. **CFU:** 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Teoria delle reazioni nucleari A	6	FIS/04 FISICA NUCLEARE E SUBNUCLEARE	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Teoria quantistica dei solidi (9 CFU)

Denominazione in Inglese: Quantum theory of solids

Obiettivi formativi: Il corso presenta teorie e metodi per lo studio delle proprietà di stato fondamentale e le eccitazioni elettroniche in sistemi a molti elettroni. In particolare:

Teorie di campo medio per il calcolo degli stati elettronici nei materiali; approssimazioni a singola particella e loro superamento. Teoria del funzionale densità e sua implementazione computazionale. Teoria a molti corpi degli stati eccitonici. Teoria dei plasmoni e schermo dielettrico nei cristalli. Densità degli stati proiettata e funzione di Green. Momenti di una Hamiltoniana e funzione di Green. Il problema classico dei momenti e sua soluzione con frazioni continue. Il metodo ricorsivo di Haydock-Heine-Kelly-Lanczos. Equazione di Dyson e Metodo di rinormalizzazione per gli stati elettronici. Costruzione di Hamiltoniane tight-binding ridotte per il calcolo di stati elettronici in sistemi multilayer. Metodi ricorsivi e trasporto elettronico. Superconduttività: aspetti fenomenologici, teorie termodinamiche, teoria dei London, teoria di Pippard, teoria di Ginzburg-Landau. Interazione elettrone-elettrone mediata da fononi; teoria BCS, Teoria di Bogoliubov-Valatin, Tunneling Giaever e tunneling Josephson. Riflessione di Andreev.

The course presents theories and methods for the study of ground state excited properties in many electron systems.In particular:

Mean field theories for the computation of electronic states in materials; single particle approximations and beyond. Density

functional theory and its computational implementation. Many-body theory of excitonic states. Plasmon theory and dielectric screen in crystals. Projected density of states and Green's function. Moments of a Hamiltonian and Green's function. The classical problem of moments and its solution with continued fractions. The recursive method of Haydock-Heine-Kelly-Lanczos. Dyson equation and renormalization method for electronic states. Construction of tight-binding reduced Hamiltonians for the computation of electronic states in multilayer systems. Recursive methods and electronic transport. Superconductivity: phenomenological aspects, thermodynamic theories, London theory, Pippard theory, Ginzburg-Landau theory. Electron-electron interaction mediated by phonons; BCS theory, Bogoliubov-Valatin theory, Tunneling Giaever and tunneling Josephson. Andreev's reflection.

Objectivi formativi in Inglese: Electronic states in solids: the one-electron approximation and beyond. Excitons, plasmons, dielectric screening in crystals. The Born-Oppenheimer approximation. Hellmann-Feynman theorem and its application to the calculation of forces on the nuclei. Berry phase. Superconductivity.

CFU: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata. Consigliato è anche il corso di Fisica dello Stato Solido.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Teoria quantistica dei solidi	9	FIS/03 FISICA DELLA MATERIA	Affini o integrative	+ esercitazioni	Attività formative affini o integrative

Teorie della gravitazione (9 CFU)

Denominazione in Inglese: gravitation theory

Obiettivi formativi: Dopo aver introdotto la geometria differenziale, sono presentate le formulazioni principali, lagrangiane e hamiltoniane, della gravità classica, e le soluzioni esatte più importanti. Viene studiata la definizione di energia del campo gravitazionale e dimostrata la sua positività. Sono poi trattati gli aspetti notevoli della gravità quantistica, come la radiazione di Hawking, l'entropia dei buchi neri, la formulazione perturbativa e il problema della nonrinormalizzabilità.

CFU: 9 Reteirabilità: 1

Propedeuticità: la frequenza è fortemente consigliata

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Teorie della gravitazione		FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative		Attività formative affini o integrative

Teorie della gravitazione A (6 CFU)

Denominazione in Inglese: gravitation theory

Obiettivi formativi: Il corso è dedicato alle formulazioni principali, lagrangiane e

hamiltoniane, della gravità classica, le soluzioni esatte più

importanti, la definizione di energia del campo gravitazionale e la

sua positività, la radiazione di Hawking, la teoria delle perturbazioni, e alcuni problemi legati alla quantizzazione del campo gravitazionale.

CFU: 6

Reteirabilità: 1

Propedeuticità: frequenza fortemente consigliata

Modalità di verifica finale: prova orale

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Teorie della gravitazione A	6	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative		Attività formative affini o integrative

Topological quantum field theory (6 CFU)

Denominazione in Inglese: Topological quantum field theory

Obiettivi formativi: Descrivere le applicazioni dei metodi della teoria dei campi quantizzati nel calcolo di invarianti topologici associati ai nodi ed alle varietà tridimensionali. Apprendere alcune nozioni basilari di topologia e della teoria degli invarianti

polinomiali associati ai nodi. Gli argomenti discussi comprendono: teorie di gauge topologiche, operatori di linea di Wilson, relazioni di skein, calcolo perturbativo, operatori composti.

Objectivi formativi in Inglese: Give a description of the applications of quantum field theory in the computation of the topological invariants which are associated with knots and 3-manifolds. Learn some basic notions of topology and of the theory of the polynomial invariants associated with knots. The discussed arguments include: topological gauge theories, Wilson line operators, skein relations, perturbative calculus, composite operators.

CFU: 6 Reteirabilità: 1

Propedeuticità: La freguenza alle lezioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Inglese

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Topological quantum field theory	6	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Transizioni di fase e fenomeni critici (6 CFU)

Denominazione in Inglese: Phase transitions and critical phenomena

Obiettivi formativi: Il corso è dedicato alle transizioni di fase di seconda specie e ai fenomeni critici, teoria di Landau-Ginzburg, scaling e trasformazioni di Kadanoff, gruppo di rinormalizzazione e calcolo degli indici critici.

Obiettivi formativi in Inglese: The course is dedicated to the second order phase transitions and the critical phenomena, Landau-Ginzburg theory, scaling and Kadanoff transformations, renormalization group and the computation of the critical indices.

CFU: 6

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Moduli

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Transizioni di fase e fenomeni critici	6	FIS/02 FISICA TEORICA, MODELLI E METODI MATEMATICI	Affini o integrative	lezioni frontali + esercitazioni	Attività formative affini o integrative

Trattamento di immagini biomediche (9 CFU)

Denominazione in Inglese: Biomedical image processing

Obiettivi formativi: Il corso fornisce i fondamenti per la ricostruzione tomografica ed elaborazione di immagini biomediche. Sono trattati i temi della visione biologica e artificiale. Sono sviluppate esperienze dirette su sistemi di elaborazione di immagini digitali.

Objectivi formativi in Inglese: The course provides the basic for the tomographic reconstruction algorithms and the processing of biomedical images. The physics aspects of the biological and artificial vision are discussed. Hands-on experiences on digital image processing are held.

CFÚ: 9

Reteirabilità: 1

Propedeuticità: La frequenza alle lezioni e alle esercitazioni è fortemente consigliata.

Modalità di verifica finale: Prova d'esame orale.

Lingua ufficiale: Italiano

Denominazione	CFU	SSD	Tipologia	Caratteristica	Ambito
Trattamento di immagini biomediche		FIS/07 FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)	, and the second	+ esercitazioni	Attività formative affini o integrative

Curriculum: INTERAZIONI FONDAMENTALI Regolamento Fisica

Primo	anno	(57	CFU)	

Interazioni fondamentali (9 CFU)

	CFU	SSD	Tipologia	Ambito
Interazioni fondamentali	9	FIS/04	Caratterizzanti	Microfisico e della struttura della materia

Laboratorio Interazioni Fondamentali (15 CFU)

	CFU	SSD	Tipologia	Ambito
MODULO B	6	FIS/01	Caratterizzanti	Sperimentale applicativo
MODULO A	9	FIS/01	Caratterizzanti	Sperimentale applicativo

Gruppo: IF: Gruppo 1 (9 CFU)

Descrizione	Tipologia	Ambito
IF: Corsi FIS02	Caratterizzanti	Teorico e dei fondamenti della fisica

Gruppo: IF. Gruppo 3 (6 CFU)

	Descrizione	Tipologia	Ambito
corsi a scelta fra le attività affini e integrative		Affini o integrative	

Gruppo: IF: Gruppo 4 (9 CFU)

Descrizione	Tipologia	Ambito
gruppo per attività a scelta	Affini o integrative	

Gruppo: IF: gruppo IF (9 CFU)

Descrizi	ne Tipologia	Ambito
Libera scelta di contenuto IF	Affini o integrative	

Curriculum: INTERAZIONI FONDAMENTALI

Secondo anno (63 CFU)

Gruppo: IF: Gruppo 2 (6 CFU)

Descrizione	Tipologia	Ambito
Corsi caratterizzanti FIS05	Caratterizzanti	Astrofisico, geofisico e spaziale

Gruppo: Liberi 12 CFU (12 CFU)

Descrizione	Tipologia	Ambito
Corsi liberi		

	CFU	SSD	Tipologia	Ambito
Prova finale	44	PROFIN_S	Altre attività - prova finale	Per la prova finale
Altre conoscenze utili per l'inserimento nel mondo del lavoro	1	NN	Altre attività - Altre conoscenze utili per l'inserimento nel mondo del lavoro	Altre Conoscenze Utili per l'Inserimento Nel Mondo del Lavoro

Corsi liberi

rimo anno (57 CFU)						
isica teorica 1 (9 CFU)						
	CF	U	SSD	Ti	pologia	Ambito
Fisica teorica 1	9		FIS/02	Caratterizza	anti	Teorico e dei fondamen della Fisic
isica teorica 2 (9 CFU)						
	CF	U	SSD	Ti	pologia	Ambito
Fisica teorica 2	9		FIS/02	Caratterizza	anti	Teorico e dei fondamen
						della Fisio
iruppo: Teorico: laboratori (9 CFU)						della Fisic
iruppo: Teorico: laboratori (9 CFU)	Descrizione		Tipol	ogia	Ambi	
ruppo: Teorico: laboratori (9 CFU) Corsi FIS01		Ca	Tipol ratterizzan		Ambi	ito
		Ca				ito
Corsi FIS01		Ca		ti		oplicativo
Corsi FIS01	Descrizione		ratterizzan	ogia	Sperimentale ap	oplicativo
Corsi FIS01 Gruppo: Teorico: astrofisica (6 CFU)	Descrizione		ratterizzan Tipol	ogia	Sperimentale ap Ambi Astrofisico, geori	oplicativo
Corsi FIS01 Gruppo: Teorico: astrofisica (6 CFU) Corso caratterizzante - Fisica Teorica	Descrizione		ratterizzan Tipol	ogia ti	Sperimentale ap Ambi Astrofisico, geori	oplicativo to fisico e

Descrizione

Tipologia

Ambito

Curriculum: FISICA TEORICA

Secondo anno (63 CFU)

Gruppo: Teorico: affini e integrativi (18 CFU)

Descrizione	Tipologia	Ambito
Altri corsi DI NECESSARIA ATTIVAZIONE per il curriculum di Fisica teorica	Affini o integrative	

	CFU	SSD	Tipologia	Ambito
Prova finale	44	PROFIN_S	Altre attività - prova finale	Per la prova finale
Altre conoscenze utili per l'inserimento nel mondo del lavoro	1	NN	Altre attività - Altre conoscenze utili per l'inserimento nel mondo del lavoro	Altre Conoscenze Utili per l'Inserimento Nel Mondo del Lavoro

Curriculum: FISICA DELLA MATERIA Regolamento Fisica

Primo anno (60 CFU)

Fondamenti di interazione radiazione materia (9 CFU)

	CFU	SSD	Tipologia	Ambito
Fondamenti di interazione radiazione materia	9	FIS/03	Caratterizzanti	Microfisico e della struttura della materia

Laboratorio di fisica della materia e nanotecnologie (15 CFU)

	CFU	SSD	Tipologia	Ambito
Materials and nanotechnologies laboratory	15	FIS/01	Caratterizzanti	Sperimentale applicativo

Gruppo: Struttura: microfisico 2 (9 CFU)

Descrizione	Tipologia	Ambito
Corsi caratterizzanti curriculum struttura: sistemi complessi, sistemi disordinati	Caratterizzanti	Microfisico e della struttura della materia

Gruppo: Struttura: teorico (9 CFU)

Descrizione	Tipologia	Ambito
Corso caratterizzante per il curriculum di Fisica della Materia	Caratterizzanti	Teorico e dei fondamenti della fisica

Gruppo: Struttura: microfisico 1 (9 CFU)

Descrizione	Tipologia	Ambito
Corso caratterizzante per il curriculum di Fisica della Materia Plasmi, Stato solido	Affini o integrative	

Gruppo: struttura: a scelta (9 CFU)

Descrizione	Tipologia	Ambito
Corso consigliato per il curriculum di Fisica della Materia	Affini o integrative	

Curriculum: FISICA DELLA MATERIA

Secondo anno (60 CFU)

Gruppo: Struttura: Astrofisica (6 CFU)

Descrizione	Tipologia	Ambito
Struttura: FIS05	Caratterizzanti	Astrofisico, geofisico e spaziale

Gruppo: Liberi 9 CFU (9 CFU)

Descrizione	Tipologia	Ambito
Tutti gli insegnamenti del corso di laurea fino a 9 CFU		

	CFU	SSD	Tipologia	Ambito
Prova finale	44	PROFIN_S	Altre attività - prova finale	Per la prova finale
Altre conoscenze utili per l'inserimento nel mondo del lavoro	1	NN	Altre attività - Altre conoscenze utili per l'inserimento nel mondo del lavoro	Altre Conoscenze Utili per l'Inserimento Nel Mondo del Lavoro

Curriculum: FISICA MEDICA Regolamento Fisica

Primo anno (60 CFU)

Fisica medica I (9 CFU)

	CFU	SSD	Tipologia	Ambito
Fisica medica	9	FIS/07	Caratterizzanti	Sperimentale applicativo

Laboratorio di fisica medica (12 CFU)

	CFU	SSD	Tipologia	Ambito
Laboratorio di fisica medica - Modulo A	6	FIS/01	Caratterizzanti	Sperimentale applicativo
Laboratorio di fisica medica - Modulo B	6	FIS/01	Caratterizzanti	Sperimentale applicativo

Gruppo: Medica: microfisico (6 CFU)

Descrizione	Tipologia	Ambito
Corsi FIS03/04	Caratterizzanti	Microfisico e della struttura della materia

Gruppo: Medica: astro (6 CFU)

Descriz	one Tipol	ologia Ambito	
Corso caratterizzante del curriculum	Caratterizzan	nti Astrofisico, geofisico e spaziale	

Gruppo: Medica: teorica (9 CFU)

Descrizione	Tipologia	Ambito
Corso caratterizzante per il curriculum di Fisica Medica	Caratterizzanti	Teorico e dei fondamenti della fisica

Gruppo: Medica: gruppo FMED 18CFU (18 CFU)

Descrizione	Tipologia	Ambito
Corsi consigliati per il curriculum di Fisica Medica	Affini o integrative	

Curriculum: FISICA MEDICA

Secondo anno (60 CFU)

Gruppo: Liberi 15 CFU (15 CFU)

Descri	rizione Tipologia	Ambito	
Corsi liberi			

	CFU	SSD	Tipologia	Ambito
Prova finale	44	PROFIN_S	Altre attività - prova finale	Per la prova finale
Altre conoscenze utili per l'inserimento nel mondo del lavoro	1	NN	Altre attività - Altre conoscenze utili per l'inserimento nel mondo del lavoro	Altre Conoscenze Utili per l'Inserimento Nel Mondo del Lavoro

Curriculum: ASTRONOMIA E ASTROFISICA Regolamento Fisica

Astrofisica extragalattica e cosmologia (9 CFU)

	CFU	SSD	Tipologia	Ambito
Astrofisica extragalattica e cosmologia	9	FIS/05	Caratterizzanti	Astrofisico, geofisico e spaziale

Astrofisica Osservativa (9 CFU)

	CFU	SSD	Tipologia	Ambito
Astrofisica osservativa	9	FIS/01	Caratterizzanti	Sperimentale applicativo

Fisica stellare (9 CFU)

	CFU	SSD	Tipologia	Ambito
Fisica stellare	9	FIS/05	Caratterizzanti	Astrofisico, geofisico e spaziale

Processi astrofisici (9 CFU)

	CFU	SSD	Tipologia	Ambito
Processi astrofisici	9	FIS/05	Caratterizzanti	Astrofisico, geofisico e spaziale

Gruppo: Astro: teorico (9 CFU)

	Descrizione	Tipologia	Ambito
corsi FIS02 completamento obbligo		Caratterizzanti	Teorico e dei fondamenti della fisica

Gruppo: Astro: microfisico (9 CFU)

	Descrizione	Tipologia	Ambito
corsi FIS03/04 completamento obbligo		Caratterizzanti	Microfisico e della struttura della materia

Gruppo: Astro: gruppo ASTR (9 CFU)

	Descrizione	Tipologia	Ambito
corsi gruppo ASTR (almeno 6 CFU)		Affini o integrative	

Curriculum: ASTRONOMIA E ASTROFISICA

Secondo anno (57 CFU)

Gruppo: Liberi 12 CFU (12 CFU)

De	escrizione	Tipologia	Ambito
Corsi liberi			

	CFU	SSD	Tipologia	Ambito
Prova finale	44	PROFIN_S	Altre attività - prova finale	Per la prova finale
Altre conoscenze utili per l'inserimento nel mondo del lavoro	1	NN	Altre attività - Altre conoscenze utili per l'inserimento nel mondo del lavoro	Altre Conoscenze Utili per l'Inserimento Nel Mondo del Lavoro

Curriculum: GENERALE Regolamento Fisica

Primo anno (57 CFU)

Gruppo: GR. fis 01 pds libero (9 CFU)

Descrizione	Tipologia	Ambito
Tutti gli insegnamenti FIS 01 che sono obbligatori in qualche piano di studi	Caratterizzanti	Sperimentale applicativo

Gruppo: GR. fis 02 pds libero (18 CFU)

Descrizione	Tipologia	Ambito
Tutti gli insegnamenti FIS 02 che sono obbligatori in qualche piano di studi	Caratterizzanti	Teorico e dei fondamenti della fisica

Gruppo: GR. fis 03 e 04 pds libero (9 CFU)

Descrizione	Tipologia	Ambito
Tutti gli insegnamenti FIS 03/04 che sono obbligatori in qualche piano di studi	Caratterizzanti	Microfisico e della struttura della materia

Gruppo: GR. fis 05 pds libero (9 CFU)

Descrizione	Tipologia	Ambito
Tutti gli insegnamenti FIS 05 che sono obbligatori in qualche piano di studi	Caratterizzanti	Astrofisico, geofisico e spaziale

Attività a libera scelta (12 cfu) (12 CFU)

	CFU	SSD	Tipologia	Ambito
Attività a libera scelta (curr. IF)	12	NN	Altre attività - scelta libera dello studente	A scelta dello studente

Curriculum: GENERALE

Secondo anno (63 CFU)

Gruppo: GR FIS: affini e integrative (18 CFU)

	Descrizione	Tipologia	Ambito
corsi "FIS" attività: affini e integrative		Affini o integrative	

	CFU	SSD	Tipologia	Ambito
Prova finale	44	PROFIN_S	Altre attività - prova finale	Per la prova finale
Altre conoscenze utili per l'inserimento nel mondo del lavoro	1	NN	Altre attività - Altre conoscenze utili per l'inserimento nel mondo del lavoro	Altre Conoscenze Utili per l'Inserimento Nel Mondo del Lavoro